{"title":"A Review on Tough Soft Composites at Different Length Scales","authors":"Wei Cui, Ruijie Zhu","doi":"10.3390/textiles1030027","DOIUrl":null,"url":null,"abstract":"Soft composites are widely employed in industrial and biomedical fields, which often serve as load-bearing structural materials by virtue of a special combination of high strength, high toughness, and low flexural stiffness. Understanding the toughening mechanism of such composites is crucial for designing the next-generation soft materials. In this review, we give an overview of recent progress in soft composites, focusing on the design strategy, mechanical properties, toughening mechanisms, and relevant applications. Fundamental design strategies for soft composites that dissipate energy at different length scales are firstly described. By subsequently elucidating the synergistic effects of combining soft and hard phases, we show how a resulting composite can achieve unprecedented mechanical performance by optimizing the energy dissipation. Relevant toughening models are discussed to interpret the superior strength and fracture toughness of such soft composites. We also highlight relevant applications of these soft composites by taking advantage of their special mechanical responses.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"67 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles1030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Soft composites are widely employed in industrial and biomedical fields, which often serve as load-bearing structural materials by virtue of a special combination of high strength, high toughness, and low flexural stiffness. Understanding the toughening mechanism of such composites is crucial for designing the next-generation soft materials. In this review, we give an overview of recent progress in soft composites, focusing on the design strategy, mechanical properties, toughening mechanisms, and relevant applications. Fundamental design strategies for soft composites that dissipate energy at different length scales are firstly described. By subsequently elucidating the synergistic effects of combining soft and hard phases, we show how a resulting composite can achieve unprecedented mechanical performance by optimizing the energy dissipation. Relevant toughening models are discussed to interpret the superior strength and fracture toughness of such soft composites. We also highlight relevant applications of these soft composites by taking advantage of their special mechanical responses.