Discovering the roots: uniform closure results for algebraic classes under factoring

P. Dutta, Nitin Saxena, Amit Sinhababu
{"title":"Discovering the roots: uniform closure results for algebraic classes under factoring","authors":"P. Dutta, Nitin Saxena, Amit Sinhababu","doi":"10.1145/3188745.3188760","DOIUrl":null,"url":null,"abstract":"Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots r is small but the multiplicities are exponentially large. Our method sets up a linear system in r unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,…,xn) of size s we prove that each factor has size at most a polynomial in: s and the degree of the squarefree part of f. Consequently, if f1 is a 2Ω(n)-hard polynomial then any nonzero multiple ∏i fiei is equally hard for arbitrary positive ei’s, assuming that ∑ideg(fi) is at most 2O(n). It is an old open question whether the class of poly(n)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial f of degree nO(1) and formula (resp. ABP) size nO(logn) we can find a similar size formula (resp. ABP) factor in randomized poly(nlogn)-time. Consequently, if determinant requires nΩ(logn) size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ, f(τx) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems; supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & B'urgisser, FOCS 2001).","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots r is small but the multiplicities are exponentially large. Our method sets up a linear system in r unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,…,xn) of size s we prove that each factor has size at most a polynomial in: s and the degree of the squarefree part of f. Consequently, if f1 is a 2Ω(n)-hard polynomial then any nonzero multiple ∏i fiei is equally hard for arbitrary positive ei’s, assuming that ∑ideg(fi) is at most 2O(n). It is an old open question whether the class of poly(n)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial f of degree nO(1) and formula (resp. ABP) size nO(logn) we can find a similar size formula (resp. ABP) factor in randomized poly(nlogn)-time. Consequently, if determinant requires nΩ(logn) size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ, f(τx) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems; supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & B'urgisser, FOCS 2001).
发现根:因式分解下代数类的一致闭包结果
牛顿迭代(NI)是一个有350年历史的递归公式,它可以非常快速地逼近多项式的单根。我们将其推广到同时近似所有根的矩阵递归(allRootsNI)。在这种形式下,当根数r很小但多重度呈指数级大时,该过程产生更好的电路复杂度。我们的方法建立了一个有r个未知数的线性系统,并迭代地将根建立为形式幂级数。对于大小为s的代数电路f(x1,…,xn),我们证明每个因子的大小最多为s中的多项式和f的无平方部分的程度。因此,如果f1是2Ω(n)-硬多项式,那么任何非零倍数∏i fiei对于任意正ei来说同样困难,假设∑ideg(fi)最多为2O(n)。这是一个古老的开放性问题,即聚(n)大小的公式类(如:代数分支程序在因式分解下是封闭的。我们证明了给定阶为nO(1)的多项式f和公式(resp。ABP)大小nO(logn),我们可以找到一个类似的大小公式(resp)。随机化多(nlogn)时间的ABP因子。因此,如果行列式需要nΩ(logn)大小公式,那么对于它的任何非零倍数也可以这样说。作为证明的一部分,我们确定了多元多项式分解的一个新性质。我们证明了在随机线性变换τ下,f(τx)通过幂级数根完全因子化。此外,该分解方法还能很好地适应电路复杂度分析。这与allRootsNI是帮助我们在老的开放问题上取得进展的技术;补充了代数电路分解中的大量经典结果和概念。Zassenhaus, J.NT 1969;Kaltofen, STOC 1985-7 & B'urgisser, fos 2001)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信