Interphase Boundary Segregation and Precipitate Coarsening Resistance in Ternary Alloys: An Analytic Phase-Field Model Describing Chemical Effects

S. Kadambi, F. Abdeljawad, S. Patala
{"title":"Interphase Boundary Segregation and Precipitate Coarsening Resistance in Ternary Alloys: An Analytic Phase-Field Model Describing Chemical Effects","authors":"S. Kadambi, F. Abdeljawad, S. Patala","doi":"10.2139/ssrn.3539253","DOIUrl":null,"url":null,"abstract":"Abstract Many experimental and first principles studies on precipitation hardening alloys show that segregation of elemental species to the matrix-precipitate interphase boundary (IB) reduces the boundary’s energy. This segregation mechanism can thermally stabilize the microstructure against precipitate coarsening processes and allow for higher operating temperatures in structural applications. In this paper, we develop a phase-field modeling framework to describe IB solute segregation in ternary alloys. The interfacial thermodynamics is effectively described by defining an IB phase with a characteristic free energy-concentration dependence. Equilibrium for the IB phase is established via the parallel tangent plane construction, analogous to classical treatments for segregation to free surfaces and grain boundaries. Analytic steady-steady solutions elucidating the dependence of IB properties on bulk phase composition, temperature and model parameters are derived for a one-dimensional system. Analytic relations for the classical thermodynamic quantities–IB energy and relative solute excess–are derived and the Gibbs adsorption equation is shown to hold; therefore, predictions of the model can be compared with experiments and atomistic simulations. An application of the model is demonstrated for Zn segregation to Mg/Mg2Sn using representative IB parameters. A two-particle coarsening simulation of IB segregation is performed: the result demonstrates enhanced coarsening resistance of the ternary alloy relative to the binary alloy.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3539253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Many experimental and first principles studies on precipitation hardening alloys show that segregation of elemental species to the matrix-precipitate interphase boundary (IB) reduces the boundary’s energy. This segregation mechanism can thermally stabilize the microstructure against precipitate coarsening processes and allow for higher operating temperatures in structural applications. In this paper, we develop a phase-field modeling framework to describe IB solute segregation in ternary alloys. The interfacial thermodynamics is effectively described by defining an IB phase with a characteristic free energy-concentration dependence. Equilibrium for the IB phase is established via the parallel tangent plane construction, analogous to classical treatments for segregation to free surfaces and grain boundaries. Analytic steady-steady solutions elucidating the dependence of IB properties on bulk phase composition, temperature and model parameters are derived for a one-dimensional system. Analytic relations for the classical thermodynamic quantities–IB energy and relative solute excess–are derived and the Gibbs adsorption equation is shown to hold; therefore, predictions of the model can be compared with experiments and atomistic simulations. An application of the model is demonstrated for Zn segregation to Mg/Mg2Sn using representative IB parameters. A two-particle coarsening simulation of IB segregation is performed: the result demonstrates enhanced coarsening resistance of the ternary alloy relative to the binary alloy.
三元合金的相界面偏析和抗析出物粗化:描述化学效应的解析相场模型
摘要许多关于沉淀硬化合金的实验和第一性原理研究表明,元素种向基体-析出相界面(IB)的偏析降低了界面的能量。这种偏析机制可以热稳定微观组织,防止沉淀粗化过程,并允许在结构应用中使用更高的工作温度。在本文中,我们开发了一个相场建模框架来描述三元合金中IB溶质偏析。通过定义具有自由能浓度依赖特征的IB相,有效地描述了界面热力学。IB相的平衡是通过平行切面结构建立的,类似于自由表面和晶界的偏析的经典处理。导出了一维系统中IB性质与体相组成、温度和模型参数相关的解析定常解。导出了经典热力学量(ib能和相对溶质过剩)的解析关系,并证明了吉布斯吸附方程成立;因此,模型的预测可以与实验和原子模拟进行比较。用代表性的IB参数证明了该模型在Zn向Mg/Mg2Sn偏析中的应用。结果表明,相对于二元合金,三元合金的抗粗化性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信