GLOBAL ANALYSIS FOR A DELAY - DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Elaiw, N. AlShamrani
{"title":"GLOBAL ANALYSIS FOR A DELAY - DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE","authors":"A. Elaiw, N. AlShamrani","doi":"10.12941/JKSIAM.2014.18.317","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters R 0 (the basic infection reproduction number) and R 1 (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle’s invariance principle.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"94 1","pages":"317-335"},"PeriodicalIF":0.3000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters R 0 (the basic infection reproduction number) and R 1 (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle’s invariance principle.
具有抗体和一般非线性发病率的延迟分布病毒感染模型的全局分析
在这项工作中,我们研究了具有抗体免疫反应的病毒感染模型的全局稳定性分析。发病率由未感染靶细胞、感染细胞和游离病毒种群的一般函数给出。该模型结合了两种类型的细胞内分布时滞来描述病毒接触未感染细胞并释放新的感染性病毒所需的时间。我们在一般发病率函数上建立了一组条件,并确定了两个阈值参数r0(基本感染繁殖数)和r1(抗体免疫反应激活数),这两个阈值参数足以确定模型的全局动态。利用Lyapunov理论和LaSalle不变性原理证明了模型平衡点的全局渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信