An Adaptive Hybrid Genetic Algorithm for VLSI Standard Cell Placement Problem

Xiongfeng Chen, Geng Lin, Jianli Chen, Wen-xing Zhu
{"title":"An Adaptive Hybrid Genetic Algorithm for VLSI Standard Cell Placement Problem","authors":"Xiongfeng Chen, Geng Lin, Jianli Chen, Wen-xing Zhu","doi":"10.1109/ICISCE.2016.45","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive hybrid genetic algorithm (AHGA) for VLSI standard cell placement problem which belongs to NP-hard combinatorial optimization problem. Based on the distinguishing feature of solution space of the problems with various scale and array or non-array placement style, we correspondingly use some adaptive strategies to greatly reduce the runtime. We make innovations in the adaptive strategies for constructing single crossover meme and accepting placement candidate. The experimental tests are performed on Peko suite3 and ISPD04 benchmark circuits, the results and comparisons show that these strategies are efficient.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":"53 1","pages":"163-167"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an adaptive hybrid genetic algorithm (AHGA) for VLSI standard cell placement problem which belongs to NP-hard combinatorial optimization problem. Based on the distinguishing feature of solution space of the problems with various scale and array or non-array placement style, we correspondingly use some adaptive strategies to greatly reduce the runtime. We make innovations in the adaptive strategies for constructing single crossover meme and accepting placement candidate. The experimental tests are performed on Peko suite3 and ISPD04 benchmark circuits, the results and comparisons show that these strategies are efficient.
超大规模集成电路标准单元放置问题的自适应混合遗传算法
针对超大规模集成电路标准单元布局问题,提出了一种自适应混合遗传算法(AHGA)。根据不同规模和阵列或非阵列布置方式问题的解空间特征,采用相应的自适应策略,大大缩短了运行时间。在构建单一跨界模因和接受植入候选人的自适应策略上进行了创新。在Peko suite3和ISPD04基准电路上进行了实验测试,结果和比较表明这些策略是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信