Design and UVM Verification of an RTC Subsystem with Temperature Compensation

Yuxin Liu, N. Tan, Xiaohui Xiao, Junhu Xia, Wanrong Hu, Yan Ding
{"title":"Design and UVM Verification of an RTC Subsystem with Temperature Compensation","authors":"Yuxin Liu, N. Tan, Xiaohui Xiao, Junhu Xia, Wanrong Hu, Yan Ding","doi":"10.1109/ICICM54364.2021.9660348","DOIUrl":null,"url":null,"abstract":"The real-time clock (RTC) integrated circuit is a special-purpose accurate clock generating circuit that is used in many microcontroller units (MCUs). In this paper, we design an ultra-low power and high-precision RTC subsystem used in general purpose MCUs. A temperature compensation scheme is designed to improve the accuracy of the RTC. The RTC uses a 1Hz clock for generating the accurate time and a 32768-Hz clock for the temperature compensation, which can reduce power consumption while maintaining high accuracy. To get the temperature from the analog-to-digital (ADC), we design an ADC controller. A power management unit (PMU) is designed to control the MCU to enter or exit the ultra-low power mode. We also build a subsystem-level verification environment for the RTC using the universal verification methodology (UVM) platform. The results show that the functions of the RTC under various conditions are correct and coverage reaches 98% in the regression test, the frequency error within the industrial temperature range is ± 1 ppm after calibration, and the accuracy meets the requirement of most MCUs.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"11 1","pages":"384-389"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The real-time clock (RTC) integrated circuit is a special-purpose accurate clock generating circuit that is used in many microcontroller units (MCUs). In this paper, we design an ultra-low power and high-precision RTC subsystem used in general purpose MCUs. A temperature compensation scheme is designed to improve the accuracy of the RTC. The RTC uses a 1Hz clock for generating the accurate time and a 32768-Hz clock for the temperature compensation, which can reduce power consumption while maintaining high accuracy. To get the temperature from the analog-to-digital (ADC), we design an ADC controller. A power management unit (PMU) is designed to control the MCU to enter or exit the ultra-low power mode. We also build a subsystem-level verification environment for the RTC using the universal verification methodology (UVM) platform. The results show that the functions of the RTC under various conditions are correct and coverage reaches 98% in the regression test, the frequency error within the industrial temperature range is ± 1 ppm after calibration, and the accuracy meets the requirement of most MCUs.
带温度补偿的RTC子系统设计与UVM验证
实时时钟(RTC)集成电路是一种专用的精确时钟产生电路,用于许多微控制器(mcu)中。本文设计了一种用于通用单片机的超低功耗高精度RTC子系统。为了提高RTC的精度,设计了一种温度补偿方案。RTC采用1Hz时钟产生精确时间,32768 hz时钟进行温度补偿,在保持高精度的同时降低功耗。为了从模数转换器(ADC)中获取温度,我们设计了一个ADC控制器。电源管理单元(PMU)用于控制MCU进入或退出超低功耗模式。我们还使用通用验证方法(UVM)平台为RTC构建了子系统级验证环境。结果表明,RTC在各种条件下的功能都是正确的,在回归测试中覆盖率达到98%,校准后工业温度范围内的频率误差为±1 ppm,精度满足大多数mcu的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信