Marchenko–Pastur law with relaxed independence conditions

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Jennifer Bryson, R. Vershynin, Hongkai Zhao
{"title":"Marchenko–Pastur law with relaxed independence conditions","authors":"Jennifer Bryson, R. Vershynin, Hongkai Zhao","doi":"10.1142/s2010326321500404","DOIUrl":null,"url":null,"abstract":"We prove the Marchenko–Pastur law for the eigenvalues of [Formula: see text] sample covariance matrices in two new situations where the data does not have independent coordinates. In the first scenario — the block-independent model — the [Formula: see text] coordinates of the data are partitioned into blocks in such a way that the entries in different blocks are independent, but the entries from the same block may be dependent. In the second scenario — the random tensor model — the data is the homogeneous random tensor of order [Formula: see text], i.e. the coordinates of the data are all [Formula: see text] different products of [Formula: see text] variables chosen from a set of [Formula: see text] independent random variables. We show that Marchenko–Pastur law holds for the block-independent model as long as the size of the largest block is [Formula: see text], and for the random tensor model as long as [Formula: see text]. Our main technical tools are new concentration inequalities for quadratic forms in random variables with block-independent coordinates, and for random tensors.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500404","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 17

Abstract

We prove the Marchenko–Pastur law for the eigenvalues of [Formula: see text] sample covariance matrices in two new situations where the data does not have independent coordinates. In the first scenario — the block-independent model — the [Formula: see text] coordinates of the data are partitioned into blocks in such a way that the entries in different blocks are independent, but the entries from the same block may be dependent. In the second scenario — the random tensor model — the data is the homogeneous random tensor of order [Formula: see text], i.e. the coordinates of the data are all [Formula: see text] different products of [Formula: see text] variables chosen from a set of [Formula: see text] independent random variables. We show that Marchenko–Pastur law holds for the block-independent model as long as the size of the largest block is [Formula: see text], and for the random tensor model as long as [Formula: see text]. Our main technical tools are new concentration inequalities for quadratic forms in random variables with block-independent coordinates, and for random tensors.
具有宽松独立性条件的Marchenko-Pastur律
在两种新的数据没有独立坐标的情况下,我们证明了样本协方差矩阵特征值的Marchenko-Pastur定律。在第一个场景中——块独立模型——数据的坐标被划分为块,这样不同块中的条目是独立的,但来自同一块的条目可能是依赖的。在第二种情况下——随机张量模型——数据是有序的齐次随机张量[公式:见文],即数据的坐标都是从一组[公式:见文]独立随机变量中选择的[公式:见文]变量的不同乘积。我们证明,只要最大块的大小为[公式:见文本],Marchenko-Pastur定律适用于块独立模型,并且对于随机张量模型,只要[公式:见文本]。我们的主要技术工具是具有块无关坐标的随机变量的二次型和随机张量的新的集中不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信