{"title":"Theory of Gravity Dependent on Entropy","authors":"Christopher N. Watson","doi":"10.1142/s2424942423500068","DOIUrl":null,"url":null,"abstract":"Gravitational redshift decreases the resolution of measurements, causing entropy by increasing the possible microstates of position and momentum for objects within a gravitational field. This is the first paper with a quantitative equation for gravitational entropy, which extends the concept of black hole entropy to any object within a gravitational field. It also provides the first calculation of “inertial entropy,” the entropy of moving objects, by correlating changes in the scale of spacetime due to gravity with those of special relativity. The entropy scale factor (ESF) combines gravitational entropy and inertial entropy to propose that all changes in the scale of spacetime are due to entropy. In the ESF, gravity is due to entropy, not the mass of Newtonian gravity or the energy and momentum of general relativity. The key difference between Newtonian gravity and the ESF is that mass is a property of an object, while gravitational entropy is a property of a field. This means that in the ESF the entropy of objects can be increased by the gravitational fields of nearby objects. This increase in entropy results in the ESF predicting more gravitational force than Newtonian gravity does for complicated systems. This increase in force may be able to explain the phenomena attributed to dark matter, like galaxy rotation dynamics, without the need for dark matter. The same changes in scale predicted by the ESF may be able to explain the expansion of the universe, both in the inflationary epoch and the accelerating universe, without the need for an inflaton field or dark energy. The similarity of the ESF to Newtonian gravity for systems with one or two gravitational bodies explains why it has not been ruled out by prior tests of gravity.","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942423500068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational redshift decreases the resolution of measurements, causing entropy by increasing the possible microstates of position and momentum for objects within a gravitational field. This is the first paper with a quantitative equation for gravitational entropy, which extends the concept of black hole entropy to any object within a gravitational field. It also provides the first calculation of “inertial entropy,” the entropy of moving objects, by correlating changes in the scale of spacetime due to gravity with those of special relativity. The entropy scale factor (ESF) combines gravitational entropy and inertial entropy to propose that all changes in the scale of spacetime are due to entropy. In the ESF, gravity is due to entropy, not the mass of Newtonian gravity or the energy and momentum of general relativity. The key difference between Newtonian gravity and the ESF is that mass is a property of an object, while gravitational entropy is a property of a field. This means that in the ESF the entropy of objects can be increased by the gravitational fields of nearby objects. This increase in entropy results in the ESF predicting more gravitational force than Newtonian gravity does for complicated systems. This increase in force may be able to explain the phenomena attributed to dark matter, like galaxy rotation dynamics, without the need for dark matter. The same changes in scale predicted by the ESF may be able to explain the expansion of the universe, both in the inflationary epoch and the accelerating universe, without the need for an inflaton field or dark energy. The similarity of the ESF to Newtonian gravity for systems with one or two gravitational bodies explains why it has not been ruled out by prior tests of gravity.