Seung-Hwan Shin, Dong-Kyo Shim, Jaeyong Jeong, O. Kwon, Sangyong Yoon, Myung-Hoon Choi, Tae-Young Kim, H. Park, Hyun-Jun Yoon, Youngsun Song, Yoon-Hee Choi, Sang-Won Shim, Yang-Lo Ahn, Ki-Tae Park, Jin-Man Han, K. Kyung, Young-Hyun Jun
{"title":"A new 3-bit programming algorithm using SLC-to-TLC migration for 8MB/s high performance TLC NAND flash memory","authors":"Seung-Hwan Shin, Dong-Kyo Shim, Jaeyong Jeong, O. Kwon, Sangyong Yoon, Myung-Hoon Choi, Tae-Young Kim, H. Park, Hyun-Jun Yoon, Youngsun Song, Yoon-Hee Choi, Sang-Won Shim, Yang-Lo Ahn, Ki-Tae Park, Jin-Man Han, K. Kyung, Young-Hyun Jun","doi":"10.1109/VLSIC.2012.6243825","DOIUrl":null,"url":null,"abstract":"We have developed a new 3-bit programming algorithm of high performance TLC(Triple-level-cell, 3-bit/cell) NAND flash memories for 20nm node and beyond. By using the proposed 3-bit algorithm based on reprogramming with SLC-to-TLC migration, performance and BER is improved by 50% and 68%, respectively, compared to conventional method. The proposed algorithm is successfully implemented in 21nm 64Gb TLC NAND flash product that provides 8MB/s write and 400MB/s read throughputs.","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"43 1","pages":"132-133"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
We have developed a new 3-bit programming algorithm of high performance TLC(Triple-level-cell, 3-bit/cell) NAND flash memories for 20nm node and beyond. By using the proposed 3-bit algorithm based on reprogramming with SLC-to-TLC migration, performance and BER is improved by 50% and 68%, respectively, compared to conventional method. The proposed algorithm is successfully implemented in 21nm 64Gb TLC NAND flash product that provides 8MB/s write and 400MB/s read throughputs.