Spatial filter selection for illumination-invariant color texture discrimination

Bea Thai, Glenn Healey
{"title":"Spatial filter selection for illumination-invariant color texture discrimination","authors":"Bea Thai, Glenn Healey","doi":"10.1109/CVPR.1999.784623","DOIUrl":null,"url":null,"abstract":"Color texture contains a large amount of spectral and spatial structure that can be exploited for recognition. Recent work has demonstrated that spatial filters offer a convenient means of extracting illumination invariant spatial information from a color image. In this paper, we address the problem of deriving optimal fillers for illumination-invariant color texture discrimination. Color textures are represented by a set of illumination-invariant features that characterize the color distribution of a filtered image region. Given a pair of color textures, we derive a spatial filter that maximizes the distance between these textures in feature space. We provide a method for using the pair-wise result to obtain a filter that maximizes discriminability among multiple classes. A set of experiments on a database of deterministic and random color textures obtained under different illumination conditions demonstrates the improved discriminatory power achieved by using an optimized filler.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Color texture contains a large amount of spectral and spatial structure that can be exploited for recognition. Recent work has demonstrated that spatial filters offer a convenient means of extracting illumination invariant spatial information from a color image. In this paper, we address the problem of deriving optimal fillers for illumination-invariant color texture discrimination. Color textures are represented by a set of illumination-invariant features that characterize the color distribution of a filtered image region. Given a pair of color textures, we derive a spatial filter that maximizes the distance between these textures in feature space. We provide a method for using the pair-wise result to obtain a filter that maximizes discriminability among multiple classes. A set of experiments on a database of deterministic and random color textures obtained under different illumination conditions demonstrates the improved discriminatory power achieved by using an optimized filler.
光照不变颜色纹理识别的空间滤波器选择
彩色纹理包含了大量的光谱和空间结构,可用于识别。最近的研究表明,空间滤波器提供了一种方便的方法,从彩色图像中提取光照不变的空间信息。在这篇论文中,我们讨论了如何得到最优的用于光照不变颜色纹理识别的填充。颜色纹理由一组描述滤波图像区域颜色分布的光照不变特征表示。给定一对彩色纹理,我们推导出一个空间过滤器,使这些纹理在特征空间中的距离最大化。我们提供了一种使用成对结果来获得最大化多个类之间可判别性的过滤器的方法。在不同光照条件下获得的确定性和随机颜色纹理数据库上进行的一系列实验表明,使用优化填料可以提高识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信