{"title":"A Max-Margin Riffled Independence Model for Image Tag Ranking","authors":"Tian Lan, Greg Mori","doi":"10.1109/CVPR.2013.399","DOIUrl":null,"url":null,"abstract":"We propose Max-Margin Riffled Independence Model (MMRIM), a new method for image tag ranking modeling the structured preferences among tags. The goal is to predict a ranked tag list for a given image, where tags are ordered by their importance or relevance to the image content. Our model integrates the max-margin formalism with riffled independence factorizations proposed in [10], which naturally allows for structured learning and efficient ranking. Experimental results on the SUN Attribute and Label Me datasets demonstrate the superior performance of the proposed model compared with baseline tag ranking methods. We also apply the predicted rank list of tags to several higher-level computer vision applications in image understanding and retrieval, and demonstrate that MMRIM significantly improves the accuracy of these applications.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"31 1","pages":"3103-3110"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We propose Max-Margin Riffled Independence Model (MMRIM), a new method for image tag ranking modeling the structured preferences among tags. The goal is to predict a ranked tag list for a given image, where tags are ordered by their importance or relevance to the image content. Our model integrates the max-margin formalism with riffled independence factorizations proposed in [10], which naturally allows for structured learning and efficient ranking. Experimental results on the SUN Attribute and Label Me datasets demonstrate the superior performance of the proposed model compared with baseline tag ranking methods. We also apply the predicted rank list of tags to several higher-level computer vision applications in image understanding and retrieval, and demonstrate that MMRIM significantly improves the accuracy of these applications.