Joint height estimation and semantic labeling of monocular aerial images with CNNS

Shivangi Srivastava, M. Volpi, D. Tuia
{"title":"Joint height estimation and semantic labeling of monocular aerial images with CNNS","authors":"Shivangi Srivastava, M. Volpi, D. Tuia","doi":"10.1109/IGARSS.2017.8128167","DOIUrl":null,"url":null,"abstract":"We aim to jointly estimate height and semantically label monocular aerial images. These two tasks are traditionally addressed separately in remote sensing, despite their strong correlation. Therefore, a model learning both height and classes jointly seems advantageous and so, we propose a multitask Convolutional Neural Network (CNN) architecture with two losses: one performing semantic labeling, and another predicting normalized Digital Surface Model (nDSM) from the pixel values. Since the nDSM/height information is used only in the second loss, there is no need to have a nDSM map at test time, and the model can estimate height automatically on new images. We test our proposed method on a set of sub-decimeter resolution images and show that our model equals the performances of two separate models, but at the cost of a single one.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"47 1","pages":"5173-5176"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8128167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

We aim to jointly estimate height and semantically label monocular aerial images. These two tasks are traditionally addressed separately in remote sensing, despite their strong correlation. Therefore, a model learning both height and classes jointly seems advantageous and so, we propose a multitask Convolutional Neural Network (CNN) architecture with two losses: one performing semantic labeling, and another predicting normalized Digital Surface Model (nDSM) from the pixel values. Since the nDSM/height information is used only in the second loss, there is no need to have a nDSM map at test time, and the model can estimate height automatically on new images. We test our proposed method on a set of sub-decimeter resolution images and show that our model equals the performances of two separate models, but at the cost of a single one.
基于cnn的单眼航拍图像联合高度估计与语义标注
我们的目标是联合估计高度和语义标记单眼航空图像。这两项任务尽管密切相关,但在遥感中传统上是分开处理的。因此,同时学习高度和类别的模型似乎是有利的,因此,我们提出了一个具有两个损失的多任务卷积神经网络(CNN)架构:一个执行语义标记,另一个从像素值预测归一化数字表面模型(nDSM)。由于仅在第二次损失中使用nDSM/height信息,因此在测试时不需要有nDSM地图,并且模型可以在新图像上自动估计高度。我们在一组亚分米分辨率的图像上测试了我们的方法,并表明我们的模型等于两个独立模型的性能,但代价是一个单独的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信