Sequential Methods for Detecting a Change in the Distribution of an Episodic Process

T. Banerjee, Edmond Adib, A. Taha, E. John
{"title":"Sequential Methods for Detecting a Change in the Distribution of an Episodic Process","authors":"T. Banerjee, Edmond Adib, A. Taha, E. John","doi":"10.1109/ICASSP40776.2020.9054529","DOIUrl":null,"url":null,"abstract":"A new class of stochastic processes called episodic processes is introduced to model the statistical regularity of data observed in several applications in cyberphysical systems, neuroscience, and medicine. Algorithms are proposed to detect a change in the distribution of episodic processes. The algorithms can be computed recursively using finite memory and are shown to be asymptotically optimal for well-defined Bayesian or minimax stochastic optimization formulations. The application of the developed algorithms to detect a change in waveform patterns is also discussed.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 1","pages":"6009-6013"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new class of stochastic processes called episodic processes is introduced to model the statistical regularity of data observed in several applications in cyberphysical systems, neuroscience, and medicine. Algorithms are proposed to detect a change in the distribution of episodic processes. The algorithms can be computed recursively using finite memory and are shown to be asymptotically optimal for well-defined Bayesian or minimax stochastic optimization formulations. The application of the developed algorithms to detect a change in waveform patterns is also discussed.
检测情景过程分布变化的顺序方法
引入了一类新的随机过程,称为情景过程,以模拟在网络物理系统,神经科学和医学中的几种应用中观察到的数据的统计规律性。提出了一种算法来检测情景过程分布的变化。该算法可以使用有限内存递归计算,并且对于定义良好的贝叶斯或极小极大随机优化公式显示为渐近最优。本文还讨论了所开发算法在检测波形模式变化方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信