{"title":"Multi-Scale Object Detection with Feature Fusion and Region Objectness Network","authors":"W. Guan, Yuexian Zou, Xiaoqun Zhou","doi":"10.1109/ICASSP.2018.8461523","DOIUrl":null,"url":null,"abstract":"Though tremendous progresses have been made in object detection due to the deep convolutional networks, one of the remaining challenges is the multi-scale object detection(MOD). To improve the performance of MOD task, we take Faster region-based CNN (Faster R-CNN) framework and work on two specific problems: get more accurate localization for small objects and eliminate background region proposals, when there are many small objects exist. Specifically, a feature fusion module is introduced which jointly utilize the high-abstracted semantic knowledge captured in higher layer and details information captured in the lower layer to generate a fine resolution feature maps. As a result, the small objects can be localized more accurately. Besides, a novel Region Objectness Network is developed for generating effective proposals which are more likely to cover the target objects. Extensive experiments have been conducted over UA-DETRAC car datasets, as well as a self-built bird dataset (BSBDV 2017) collected from Shenzhen Bay coastal wetland, which demonstrate the competitive performance and the comparable detection speed of our proposed method.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"2596-2600"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Though tremendous progresses have been made in object detection due to the deep convolutional networks, one of the remaining challenges is the multi-scale object detection(MOD). To improve the performance of MOD task, we take Faster region-based CNN (Faster R-CNN) framework and work on two specific problems: get more accurate localization for small objects and eliminate background region proposals, when there are many small objects exist. Specifically, a feature fusion module is introduced which jointly utilize the high-abstracted semantic knowledge captured in higher layer and details information captured in the lower layer to generate a fine resolution feature maps. As a result, the small objects can be localized more accurately. Besides, a novel Region Objectness Network is developed for generating effective proposals which are more likely to cover the target objects. Extensive experiments have been conducted over UA-DETRAC car datasets, as well as a self-built bird dataset (BSBDV 2017) collected from Shenzhen Bay coastal wetland, which demonstrate the competitive performance and the comparable detection speed of our proposed method.