{"title":"Experimental Investigation of Nanoskin Formation Threshold for Nano-Enhanced Oil Recovery Nano-EOR","authors":"Y. Omotosho, O. Falode, T. Ojo","doi":"10.2118/198857-MS","DOIUrl":null,"url":null,"abstract":"\n Enhanced Oil Recovery (EOR) methods continue to be dominant in improving world’s oil reserves as producing fields mature. Global growth of 18% was recorded in proved reserves between 2007 and 2017 (BP Statistical Review, 2018), with North America, which has invested in several EOR techniques, contributing about 14% to this growth. This proves that EOR stands as a long-term solution to the menace of dwindling reserves. Recently, nanotechnology has been gaining attention for application in the petroleum industry. It has been established that nanoparticles dispersed in base fluids such as water, brine or certain organic solvents (nanofluid) exhibit some special properties proved to be advantageous for EOR purposes. Additional recovery of about 30% has been recorded. However, permeability damage, which has been widely reported, is yet to be critically studied and analysed.\n The objective of this research was to investigate how two important properties; concentration and injection rate of the nanofluid, affect oil recovery, and as well establish the thresholds of conditions which lead to permeability impairment and injection fluid loss during nanoflooding with silica nanoparticles. The permeability impairment layer which is gradually formed at the rock pore surface is termed nanoskin (a concept introduced by the author).\n Four core samples were flooded with brine followed by silica nanofluid of four different concentrations viz; 0.01, 0.5, 2.0 amd 3.0% wt/wt respectively. The flooding process was accompanied with changing injection rates viz; 0.5, 1.0, 2.0, 3.0 cm3/min.\n The result indicated that concentration of 2.0% wt/wt and injection rate of 2.0 cm3/min were threshold levels that guaranteed optimal oil recovery from the Niger Delta core samples. The overall result demonstrates that nanoflooding is a viable EOR technique and establishes a combination of parameters that will minimize nanoskin formation during nano-EOR process.","PeriodicalId":11110,"journal":{"name":"Day 2 Tue, August 06, 2019","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198857-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced Oil Recovery (EOR) methods continue to be dominant in improving world’s oil reserves as producing fields mature. Global growth of 18% was recorded in proved reserves between 2007 and 2017 (BP Statistical Review, 2018), with North America, which has invested in several EOR techniques, contributing about 14% to this growth. This proves that EOR stands as a long-term solution to the menace of dwindling reserves. Recently, nanotechnology has been gaining attention for application in the petroleum industry. It has been established that nanoparticles dispersed in base fluids such as water, brine or certain organic solvents (nanofluid) exhibit some special properties proved to be advantageous for EOR purposes. Additional recovery of about 30% has been recorded. However, permeability damage, which has been widely reported, is yet to be critically studied and analysed.
The objective of this research was to investigate how two important properties; concentration and injection rate of the nanofluid, affect oil recovery, and as well establish the thresholds of conditions which lead to permeability impairment and injection fluid loss during nanoflooding with silica nanoparticles. The permeability impairment layer which is gradually formed at the rock pore surface is termed nanoskin (a concept introduced by the author).
Four core samples were flooded with brine followed by silica nanofluid of four different concentrations viz; 0.01, 0.5, 2.0 amd 3.0% wt/wt respectively. The flooding process was accompanied with changing injection rates viz; 0.5, 1.0, 2.0, 3.0 cm3/min.
The result indicated that concentration of 2.0% wt/wt and injection rate of 2.0 cm3/min were threshold levels that guaranteed optimal oil recovery from the Niger Delta core samples. The overall result demonstrates that nanoflooding is a viable EOR technique and establishes a combination of parameters that will minimize nanoskin formation during nano-EOR process.