{"title":"Constructive exact control of semilinear 1D heat equations","authors":"Jérôme Lemoine, A. Munch","doi":"10.3934/mcrf.2022001","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The exact distributed controllability of the semilinear heat equation <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\partial_{t}y-\\Delta y + g(y) = f \\,1_{\\omega} $\\end{document}</tex-math></inline-formula> posed over multi-dimensional and bounded domains, assuming that <inline-formula><tex-math id=\"M2\">\\begin{document}$ g\\in C^1(\\mathbb{R}) $\\end{document}</tex-math></inline-formula> satisfies the growth condition <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\limsup_{r\\to \\infty} g(r)/ (\\vert r\\vert \\ln^{3/2}\\vert r\\vert) = 0 $\\end{document}</tex-math></inline-formula> has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that <inline-formula><tex-math id=\"M4\">\\begin{document}$ g^\\prime $\\end{document}</tex-math></inline-formula> does not grow faster than <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\beta \\ln^{3/2}\\vert r\\vert $\\end{document}</tex-math></inline-formula> at infinity for <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\beta>0 $\\end{document}</tex-math></inline-formula> small enough and that <inline-formula><tex-math id=\"M7\">\\begin{document}$ g^\\prime $\\end{document}</tex-math></inline-formula> is uniformly Hölder continuous on <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\mathbb{R} $\\end{document}</tex-math></inline-formula> with exponent <inline-formula><tex-math id=\"M9\">\\begin{document}$ p\\in [0,1] $\\end{document}</tex-math></inline-formula>, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order <inline-formula><tex-math id=\"M10\">\\begin{document}$ 1+p $\\end{document}</tex-math></inline-formula> after a finite number of iterations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
The exact distributed controllability of the semilinear heat equation \begin{document}$ \partial_{t}y-\Delta y + g(y) = f \,1_{\omega} $\end{document} posed over multi-dimensional and bounded domains, assuming that \begin{document}$ g\in C^1(\mathbb{R}) $\end{document} satisfies the growth condition \begin{document}$ \limsup_{r\to \infty} g(r)/ (\vert r\vert \ln^{3/2}\vert r\vert) = 0 $\end{document} has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that \begin{document}$ g^\prime $\end{document} does not grow faster than \begin{document}$ \beta \ln^{3/2}\vert r\vert $\end{document} at infinity for \begin{document}$ \beta>0 $\end{document} small enough and that \begin{document}$ g^\prime $\end{document} is uniformly Hölder continuous on \begin{document}$ \mathbb{R} $\end{document} with exponent \begin{document}$ p\in [0,1] $\end{document}, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order \begin{document}$ 1+p $\end{document} after a finite number of iterations.
The exact distributed controllability of the semilinear heat equation \begin{document}$ \partial_{t}y-\Delta y + g(y) = f \,1_{\omega} $\end{document} posed over multi-dimensional and bounded domains, assuming that \begin{document}$ g\in C^1(\mathbb{R}) $\end{document} satisfies the growth condition \begin{document}$ \limsup_{r\to \infty} g(r)/ (\vert r\vert \ln^{3/2}\vert r\vert) = 0 $\end{document} has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that \begin{document}$ g^\prime $\end{document} does not grow faster than \begin{document}$ \beta \ln^{3/2}\vert r\vert $\end{document} at infinity for \begin{document}$ \beta>0 $\end{document} small enough and that \begin{document}$ g^\prime $\end{document} is uniformly Hölder continuous on \begin{document}$ \mathbb{R} $\end{document} with exponent \begin{document}$ p\in [0,1] $\end{document}, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order \begin{document}$ 1+p $\end{document} after a finite number of iterations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.