Effects of Random Sampling Methods on Maximum Likelihood Estimates of a Simple Logistic Regression Model

Oshada Senaweera, P. Haddela, G. Dharmarathne
{"title":"Effects of Random Sampling Methods on Maximum Likelihood Estimates of a Simple Logistic Regression Model","authors":"Oshada Senaweera, P. Haddela, G. Dharmarathne","doi":"10.12691/AJAMS-9-1-5","DOIUrl":null,"url":null,"abstract":"The paper investigates the comparative effects of several random sampling methods on the maximum likelihood estimates of a simple logistic regression model. The study uses simulated data (logistic populations with pre-defined parameter values) that used Monte Carlo methods to simulate. Sampling techniques include Simple Random Sampling (SRS) and six variations of Stratified Sampling where two are single-stage Stratified Sampling and four are choice-based (two-phase) Stratified Sampling. Parameter estimates arising under each sampling technique were compared using performance measures Bias, Standard Error & Percentage of models that are feasibly estimated. The simulation-based analysis found that choice-based sampling with proportional allocation in both phases is the best-suited sampling technique for parameter estimation of a simple logistic regression model.","PeriodicalId":91196,"journal":{"name":"American journal of applied mathematics and statistics","volume":"51 1","pages":"28-37"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of applied mathematics and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJAMS-9-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper investigates the comparative effects of several random sampling methods on the maximum likelihood estimates of a simple logistic regression model. The study uses simulated data (logistic populations with pre-defined parameter values) that used Monte Carlo methods to simulate. Sampling techniques include Simple Random Sampling (SRS) and six variations of Stratified Sampling where two are single-stage Stratified Sampling and four are choice-based (two-phase) Stratified Sampling. Parameter estimates arising under each sampling technique were compared using performance measures Bias, Standard Error & Percentage of models that are feasibly estimated. The simulation-based analysis found that choice-based sampling with proportional allocation in both phases is the best-suited sampling technique for parameter estimation of a simple logistic regression model.
随机抽样方法对简单逻辑回归模型最大似然估计的影响
本文研究了几种随机抽样方法对简单逻辑回归模型的最大似然估计的比较效果。该研究使用模拟数据(具有预定义参数值的逻辑总体),使用蒙特卡罗方法进行模拟。抽样技术包括简单随机抽样(SRS)和分层抽样的六种变体,其中两种是单阶段分层抽样,四种是基于选择的(两阶段)分层抽样。在每种抽样技术下产生的参数估计值使用性能度量偏差,标准误差和可行估计模型的百分比进行比较。基于仿真的分析发现,两阶段比例分配的基于选择的抽样是最适合简单逻辑回归模型参数估计的抽样技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信