Detection and Termination of Broken-Spiral-Waves in Mathematical Models for Cardiac Tissue: A Deep-Learning Approach

Mahesh Kumar Mulimani, Jaya Kumar Alageshan, R. Pandit
{"title":"Detection and Termination of Broken-Spiral-Waves in Mathematical Models for Cardiac Tissue: A Deep-Learning Approach","authors":"Mahesh Kumar Mulimani, Jaya Kumar Alageshan, R. Pandit","doi":"10.23919/CinC49843.2019.9005822","DOIUrl":null,"url":null,"abstract":"Defibrillation, the elimination of pathological waves of electrical activation in cardiac tissue, plays an important role in the elimination of life-threatening cardiac arrhythmias like ventricular tachycardia (VT) and ventricular fibrillation (VF). We develop a deep-learning method, which uses a convolution neural network (CNN), to develop a new defibrillation scheme applicable in 2D tisue. We begin by training our CNN with a huge dataset of spiral waves $\\left( \\mathcal{S} \\right)$ and non-spiral waves $\\left( {\\mathcal{N}\\mathcal{S}} \\right)$ that we obtain from our direct numerical simulations (DNSs) of a variety of mathematical models for the propagation of electrical waves of activation in cardiac tissue. Our trained CNN can distinguish between $\\mathcal{S}$ and $\\mathcal{N}\\mathcal{S}$ patterns; in particular, it also detects a broken spiral wave as $\\mathcal{S}$. We demonstrate how to use our CNN to develop a heat map, from a broken-spiral-wave image, that yields the approximate locations of these spiral cores. We develop a defibrillation scheme that applies current, with two-dimensional (2D) Gaussian profiles of standard deviation (σ), centred at square lattice sites (NG × NG) imposed on the simulation domain (N ×N); the amplitudes of these Gaussians are taken from the heatmap. We explore the dependence of our Gaussian defibrillation scheme on a noisy image, which closely mimics the noisy optical image data.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"15 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Defibrillation, the elimination of pathological waves of electrical activation in cardiac tissue, plays an important role in the elimination of life-threatening cardiac arrhythmias like ventricular tachycardia (VT) and ventricular fibrillation (VF). We develop a deep-learning method, which uses a convolution neural network (CNN), to develop a new defibrillation scheme applicable in 2D tisue. We begin by training our CNN with a huge dataset of spiral waves $\left( \mathcal{S} \right)$ and non-spiral waves $\left( {\mathcal{N}\mathcal{S}} \right)$ that we obtain from our direct numerical simulations (DNSs) of a variety of mathematical models for the propagation of electrical waves of activation in cardiac tissue. Our trained CNN can distinguish between $\mathcal{S}$ and $\mathcal{N}\mathcal{S}$ patterns; in particular, it also detects a broken spiral wave as $\mathcal{S}$. We demonstrate how to use our CNN to develop a heat map, from a broken-spiral-wave image, that yields the approximate locations of these spiral cores. We develop a defibrillation scheme that applies current, with two-dimensional (2D) Gaussian profiles of standard deviation (σ), centred at square lattice sites (NG × NG) imposed on the simulation domain (N ×N); the amplitudes of these Gaussians are taken from the heatmap. We explore the dependence of our Gaussian defibrillation scheme on a noisy image, which closely mimics the noisy optical image data.
心脏组织数学模型中破碎螺旋波的检测和终止:一种深度学习方法
除颤是消除心脏组织电激活的病理波,在消除室性心动过速(VT)和心室颤动(VF)等危及生命的心律失常中起着重要作用。我们开发了一种深度学习方法,该方法使用卷积神经网络(CNN)来开发一种适用于二维组织的新型除颤方案。我们首先用一个巨大的螺旋波$\left(\mathcal{S} \right)$和非螺旋波$\left({\mathcal{N}\mathcal{S}} \right)$的数据集来训练我们的CNN,这些数据集是我们从心脏组织中激活电波传播的各种数学模型的直接数值模拟(dns)中获得的。我们训练的CNN可以区分$\mathcal{S}$和$\mathcal{N}\mathcal{S}$模式;特别是,它还检测到一个破碎的螺旋波为$\mathcal{S}$。我们演示了如何使用我们的CNN从破碎的螺旋波图像中开发热图,从而产生这些螺旋核心的大致位置。我们开发了一种除颤方案,该方案应用电流,具有二维(2D)高斯分布的标准差(σ),以施加在模拟域中的方形晶格位点(NG × NG)为中心(N ×N);这些高斯函数的振幅取自热图。我们探讨了高斯除颤方案对噪声图像的依赖性,该图像近似于噪声光学图像数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信