Incorporating the Barzilai-Borwein Adaptive Step Size into Sugradient Methods for Deep Network Training

A. Robles-Kelly, A. Nazari
{"title":"Incorporating the Barzilai-Borwein Adaptive Step Size into Sugradient Methods for Deep Network Training","authors":"A. Robles-Kelly, A. Nazari","doi":"10.1109/DICTA47822.2019.8945980","DOIUrl":null,"url":null,"abstract":"In this paper, we incorporate the Barzilai-Borwein [2] step size into gradient descent methods used to train deep networks. This allows us to adapt the learning rate using a two-point approximation to the secant equation which quasi-Newton methods are based upon. Moreover, the adaptive learning rate method presented here is quite general in nature and can be applied to widely used gradient descent approaches such as Adagrad [7] and RMSprop. We evaluate our method using standard example network architectures on widely available datasets and compare against alternatives elsewhere in the literature. In our experiments, our adaptive learning rate shows a smoother and faster convergence than that exhibited by the alternatives, with better or comparable performance.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"25 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we incorporate the Barzilai-Borwein [2] step size into gradient descent methods used to train deep networks. This allows us to adapt the learning rate using a two-point approximation to the secant equation which quasi-Newton methods are based upon. Moreover, the adaptive learning rate method presented here is quite general in nature and can be applied to widely used gradient descent approaches such as Adagrad [7] and RMSprop. We evaluate our method using standard example network architectures on widely available datasets and compare against alternatives elsewhere in the literature. In our experiments, our adaptive learning rate shows a smoother and faster convergence than that exhibited by the alternatives, with better or comparable performance.
将Barzilai-Borwein自适应步长纳入深度网络训练的梯度方法
在本文中,我们将Barzilai-Borwein[2]步长纳入用于训练深度网络的梯度下降方法中。这允许我们使用两点近似的正割方程来调整学习率,而准牛顿方法是基于正割方程的。此外,本文提出的自适应学习率方法具有相当的通用性,可以应用于Adagrad[7]和RMSprop等广泛使用的梯度下降方法。我们在广泛可用的数据集上使用标准示例网络架构来评估我们的方法,并与文献中的其他替代方案进行比较。在我们的实验中,我们的自适应学习率显示出比替代方案更平滑和更快的收敛速度,具有更好或相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信