Exciton-induced photocurrents in molecular crystals

H. Baessler, H. Killesreiter, G. Vaubel
{"title":"Exciton-induced photocurrents in molecular crystals","authors":"H. Baessler, H. Killesreiter, G. Vaubel","doi":"10.1039/DF9715100048","DOIUrl":null,"url":null,"abstract":"Charge carrier production by singlet excitons striking an anthracene/aluminium interface is investigated. Two possibilities are considered: (i) non-radiative energy transfer creates hot electrons and holes in the metal, which can be injected into the crystal by analogy with the photoemission process; (ii) charge transfer, efficiently competing with energy transfer, takes place, in course of which the exciton donates its electron to an empty metal state, the hole remaining within the crystal. Experimental evidence for the second mechanism is presented based on (i) the magnitude of the photocarrier production efficiency, (ii) its polarity dependence and, essentially, (iii) its reduction upon inserting a bimolecular fatty-acid layer between metal and crystal.","PeriodicalId":11262,"journal":{"name":"Discussions of The Faraday Society","volume":"1998 1","pages":"48-53"},"PeriodicalIF":0.0000,"publicationDate":"1971-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussions of The Faraday Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/DF9715100048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Charge carrier production by singlet excitons striking an anthracene/aluminium interface is investigated. Two possibilities are considered: (i) non-radiative energy transfer creates hot electrons and holes in the metal, which can be injected into the crystal by analogy with the photoemission process; (ii) charge transfer, efficiently competing with energy transfer, takes place, in course of which the exciton donates its electron to an empty metal state, the hole remaining within the crystal. Experimental evidence for the second mechanism is presented based on (i) the magnitude of the photocarrier production efficiency, (ii) its polarity dependence and, essentially, (iii) its reduction upon inserting a bimolecular fatty-acid layer between metal and crystal.
分子晶体中激子诱导的光电流
研究了单重态激子撞击蒽/铝界面产生的载流子。考虑了两种可能性:(i)非辐射能量传递在金属中产生热电子和空穴,它们可以通过类似于光发射过程注入晶体中;(ii)电荷转移与能量转移发生有效竞争,激子将其电子提供给空金属态,空穴留在晶体内。第二种机制的实验证据是基于(i)光载流子生产效率的大小,(ii)其极性依赖,以及(iii)在金属和晶体之间插入双分子脂肪酸层后的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信