BodyPrint: Pose Invariant 3D Shape Matching of Human Bodies

Jiangping Wang, Kai Ma, V. Singh, Thomas S. Huang, Terrence Chen
{"title":"BodyPrint: Pose Invariant 3D Shape Matching of Human Bodies","authors":"Jiangping Wang, Kai Ma, V. Singh, Thomas S. Huang, Terrence Chen","doi":"10.1109/ICCV.2015.186","DOIUrl":null,"url":null,"abstract":"3D human body shape matching has large potential on many real world applications, especially with the recent advances in the 3D range sensing technology. We address this problem by proposing a novel holistic human body shape descriptor called BodyPrint. To compute the bodyprint for a given body scan, we fit a deformable human body mesh and project the mesh parameters to a low-dimensional subspace which improves discriminability across different persons. Experiments are carried out on three real-world human body datasets to demonstrate that BodyPrint is robust to pose variation as well as missing information and sensor noise. It improves the matching accuracy significantly compared to conventional 3D shape matching techniques using local features. To facilitate practical applications where the shape database may grow over time, we also extend our learning framework to handle online updates.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"63 1","pages":"1591-1599"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D human body shape matching has large potential on many real world applications, especially with the recent advances in the 3D range sensing technology. We address this problem by proposing a novel holistic human body shape descriptor called BodyPrint. To compute the bodyprint for a given body scan, we fit a deformable human body mesh and project the mesh parameters to a low-dimensional subspace which improves discriminability across different persons. Experiments are carried out on three real-world human body datasets to demonstrate that BodyPrint is robust to pose variation as well as missing information and sensor noise. It improves the matching accuracy significantly compared to conventional 3D shape matching techniques using local features. To facilitate practical applications where the shape database may grow over time, we also extend our learning framework to handle online updates.
BodyPrint:人体姿势不变的3D形状匹配
三维人体形状匹配在许多现实世界的应用中具有很大的潜力,特别是随着近年来三维距离传感技术的发展。为了解决这个问题,我们提出了一种名为BodyPrint的全新整体人体形状描述器。为了计算给定身体扫描的身体印记,我们拟合了一个可变形的人体网格,并将网格参数投影到一个低维子空间,从而提高了不同人之间的可分辨性。在三个真实的人体数据集上进行了实验,证明了BodyPrint对姿态变化、缺失信息和传感器噪声具有鲁棒性。与传统的基于局部特征的三维形状匹配技术相比,该方法显著提高了匹配精度。为了方便实际应用,形状数据库可能会随着时间的推移而增长,我们还扩展了我们的学习框架来处理在线更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信