On nonpolynomial monotonicity-preserving C1 spline interpolation

IF 0.9 Q3 MATHEMATICS, APPLIED
Domingo Barrera, Salah Eddargani, Abdellah Lamnii, Mohammed Oraiche
{"title":"On nonpolynomial monotonicity-preserving C1 spline interpolation","authors":"Domingo Barrera,&nbsp;Salah Eddargani,&nbsp;Abdellah Lamnii,&nbsp;Mohammed Oraiche","doi":"10.1002/cmm4.1160","DOIUrl":null,"url":null,"abstract":"<p>New <i>C</i><sup>1</sup> cubic Hermite interpolation methods based on algebraic trigonometric (AT) spline functions are proposed. In the first one, values of a function and its first derivatives are interpolated. In the second one, a <i>C</i><sup>1</sup> AT-spline of low degree which preserves the monotonicity of the given data is defined by adding additional knots. Numerical examples are provided to show the good performance of both interpolation schemes.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1160","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

New C1 cubic Hermite interpolation methods based on algebraic trigonometric (AT) spline functions are proposed. In the first one, values of a function and its first derivatives are interpolated. In the second one, a C1 AT-spline of low degree which preserves the monotonicity of the given data is defined by adding additional knots. Numerical examples are provided to show the good performance of both interpolation schemes.

非多项式保持单调的C1样条插值
提出了基于代数三角样条函数的C1三次Hermite插值新方法。在第一种方法中,对函数的值及其一阶导数进行插值。在第二种方法中,通过添加额外的结点来定义保持给定数据单调性的低次C1 at样条。数值算例表明了两种插值方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信