Domain representable Lindelöf spaces are cofinally Polish

IF 0.4 4区 数学 Q4 MATHEMATICS
V. Tkachuk
{"title":"Domain representable Lindelöf spaces are cofinally Polish","authors":"V. Tkachuk","doi":"10.1556/012.2019.56.4.1442","DOIUrl":null,"url":null,"abstract":"We prove that, for any cofinally Polish spaceX, every locally finite family of non-empty open subsets ofXis countable. It is also established that Lindelöf domain representable spaces are cofinally Polish and domain representability coincides with subcompactness in the class ofσ-compact spaces. It turns out that, for a topological groupGwhose space has the Lindelöf Σ-property, the spaceGis domain representable if and only if it is Čech-complete. Our results solve several published open questions.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"9 1","pages":"523-535"},"PeriodicalIF":0.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2019.56.4.1442","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We prove that, for any cofinally Polish spaceX, every locally finite family of non-empty open subsets ofXis countable. It is also established that Lindelöf domain representable spaces are cofinally Polish and domain representability coincides with subcompactness in the class ofσ-compact spaces. It turns out that, for a topological groupGwhose space has the Lindelöf Σ-property, the spaceGis domain representable if and only if it is Čech-complete. Our results solve several published open questions.
领域可表示Lindelöf空间是cofinally Polish
证明了对于任意cofinally Polish spaceX, x的非空开子集的每一个局部有限族都是可数的。在σ-紧空间中,Lindelöf域可表征空间是协精的,域可表征性与次紧性是一致的。结果表明,对于空间为Lindelöf Σ-property的拓扑群g,当且仅当空间为Čech-complete时,空间域才可表示。我们的研究结果解决了几个公开发表的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信