{"title":"Particles, Especially Virtual Particles, in a Multi-fold Universe vs. QFT","authors":"Stephane H Maes","doi":"10.31219/osf.io/x8pks","DOIUrl":null,"url":null,"abstract":"In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General relativity at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. In this paper, we discuss the point of view of the virtual particles used to explain gravity emergence from entanglement and in particular position their use versus the more conventional view on virtual particles in QFT. Indeed, besides the fact that QFT has challenges to model particles, there are some strong views on what is or is not appropriate when it comes to involving virtual particles in conventional QFT, or vacuum fluctuations for that matter. The proposed multi-fold mechanisms on the other hand rely first and foremost on the concept of particles, with modifications to conventional QFT. In that context virtual particle play a central role. Besides evangelizing the need to evolve QFT, we also review how virtual particles are key to the notion of small scale non negligible addition of gravity to the standard model, and to a proposal for Ultimate Unification where al particles convey gravity and their proper interactions. We also discuss how this model is key and aligned to the area laws of blacks holes, Hawking’s radiation and the absence of gravity shielding even when using virtual particle. This discussion will also offer some perspectives on QFT in curved spacetime. The bottom line is that there are no contradiction with the main views on virtual particles of conventional QFT proposed with multi-fold universe mechanisms and that in fact, while hard to formulate, the use of virtual particles could also be modeled with fields and associated multi-fold fields. We also discuss comparing our model using pairs of entangled virtual particles versus models using only (or in addition) pairs of entangled gravitons. Such a multi-fold model with only gravitons may recover the same results or differ depending on how massive gravitons would be modeled in these new models. But we end up still recommending only a model where gravitons live in AdS(5).","PeriodicalId":23650,"journal":{"name":"viXra","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/x8pks","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General relativity at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. In this paper, we discuss the point of view of the virtual particles used to explain gravity emergence from entanglement and in particular position their use versus the more conventional view on virtual particles in QFT. Indeed, besides the fact that QFT has challenges to model particles, there are some strong views on what is or is not appropriate when it comes to involving virtual particles in conventional QFT, or vacuum fluctuations for that matter. The proposed multi-fold mechanisms on the other hand rely first and foremost on the concept of particles, with modifications to conventional QFT. In that context virtual particle play a central role. Besides evangelizing the need to evolve QFT, we also review how virtual particles are key to the notion of small scale non negligible addition of gravity to the standard model, and to a proposal for Ultimate Unification where al particles convey gravity and their proper interactions. We also discuss how this model is key and aligned to the area laws of blacks holes, Hawking’s radiation and the absence of gravity shielding even when using virtual particle. This discussion will also offer some perspectives on QFT in curved spacetime. The bottom line is that there are no contradiction with the main views on virtual particles of conventional QFT proposed with multi-fold universe mechanisms and that in fact, while hard to formulate, the use of virtual particles could also be modeled with fields and associated multi-fold fields. We also discuss comparing our model using pairs of entangled virtual particles versus models using only (or in addition) pairs of entangled gravitons. Such a multi-fold model with only gravitons may recover the same results or differ depending on how massive gravitons would be modeled in these new models. But we end up still recommending only a model where gravitons live in AdS(5).