Unsupervised Aspect Level Sentiment Analysis Using Self-Organizing Maps

E. Chifu, Tiberiu St. Letia, V. Chifu
{"title":"Unsupervised Aspect Level Sentiment Analysis Using Self-Organizing Maps","authors":"E. Chifu, Tiberiu St. Letia, V. Chifu","doi":"10.1109/SYNASC.2015.75","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised method for aspect level sentiment analysis that uses the Growing Hierarchical Self-organizing Maps. Different sentences in a product review refer to different aspects of the reviewed product. We use the Growing Hierarchical Self-organizing Maps in order to classify the review sentences. This way we determine whether the various aspects of the target entity (e.g. a product) are opinionated with positive or negative sentiment in the review sentences. By classifying the sentences against a domain specific tree-like ontological taxonomy of aspects and sentiments associated with the aspects (positive/ negative sentiments), we really classify the opinion polarity as expressed in sentences about the different aspects of the target object. The approach proposed has been tested on a collection of product reviews, more exactly reviews about photo cameras.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"4 2 1","pages":"468-475"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an unsupervised method for aspect level sentiment analysis that uses the Growing Hierarchical Self-organizing Maps. Different sentences in a product review refer to different aspects of the reviewed product. We use the Growing Hierarchical Self-organizing Maps in order to classify the review sentences. This way we determine whether the various aspects of the target entity (e.g. a product) are opinionated with positive or negative sentiment in the review sentences. By classifying the sentences against a domain specific tree-like ontological taxonomy of aspects and sentiments associated with the aspects (positive/ negative sentiments), we really classify the opinion polarity as expressed in sentences about the different aspects of the target object. The approach proposed has been tested on a collection of product reviews, more exactly reviews about photo cameras.
使用自组织地图的无监督方面级情感分析
提出了一种基于增长层次自组织图的面向方面层次情感分析的无监督方法。产品评论中的不同句子指的是被评论产品的不同方面。我们使用增长层次自组织图对复习句子进行分类。通过这种方式,我们可以确定目标实体(例如产品)的各个方面在评论句子中是否带有积极或消极的情绪。通过将句子根据领域特定的方面和与方面相关的情绪(积极/消极情绪)的树状本体分类法进行分类,我们真正地将句子中表达的关于目标对象不同方面的意见极性进行分类。所提出的方法已经在一系列产品评论上进行了测试,更确切地说,是关于相机的评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信