{"title":"Finding Anomalies with Generative Adversarial Networks for a Patrolbot","authors":"W. Lawson, Esube Bekele, Keith Sullivan","doi":"10.1109/CVPRW.2017.68","DOIUrl":null,"url":null,"abstract":"We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"484-485"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.