Categorical crystals for quantum affine algebras

IF 1.2 1区 数学 Q1 MATHEMATICS
M. Kashiwara, E. Park
{"title":"Categorical crystals for quantum affine algebras","authors":"M. Kashiwara, E. Park","doi":"10.1515/crelle-2022-0061","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a new categorical crystal structure for the quantum affine algebras is presented. We introduce the notion of extended crystals B ^ 𝔤 ⁢ ( ∞ ) {\\widehat{B}_{{\\mathfrak{g}}}(\\infty)} for an arbitrary quantum group U q ⁢ ( 𝔤 ) {U_{q}({\\mathfrak{g}})} , which is the product of infinite copies of the crystal B ⁢ ( ∞ ) {B(\\infty)} . For a complete duality datum 𝒟 {{\\mathcal{D}}} in the Hernandez–Leclerc category 𝒞 𝔤 0 {{\\mathscr{C}_{\\mathfrak{g}}^{0}}} of a quantum affine algebra U q ′ ⁢ ( 𝔤 ) {U_{q}^{\\prime}({\\mathfrak{g}})} , we prove that the set ℬ 𝒟 ⁢ ( 𝔤 ) {\\mathcal{B}_{{\\mathcal{D}}}({\\mathfrak{g}})} of the isomorphism classes of simple modules in 𝒞 𝔤 0 {{\\mathscr{C}_{\\mathfrak{g}}^{0}}} has an extended crystal structure isomorphic to B ^ 𝔤 fin ⁢ ( ∞ ) {\\widehat{B}_{{{\\mathfrak{g}}_{\\mathrm{fin}}}}(\\infty)} . An explicit combinatorial description of the extended crystal ℬ 𝒟 ⁢ ( 𝔤 ) {\\mathcal{B}_{{\\mathcal{D}}}({\\mathfrak{g}})} for affine type A n ( 1 ) {A_{n}^{(1)}} is given in terms of affine highest weights.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"31 1","pages":"223 - 267"},"PeriodicalIF":1.2000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0061","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper, a new categorical crystal structure for the quantum affine algebras is presented. We introduce the notion of extended crystals B ^ 𝔤 ⁢ ( ∞ ) {\widehat{B}_{{\mathfrak{g}}}(\infty)} for an arbitrary quantum group U q ⁢ ( 𝔤 ) {U_{q}({\mathfrak{g}})} , which is the product of infinite copies of the crystal B ⁢ ( ∞ ) {B(\infty)} . For a complete duality datum 𝒟 {{\mathcal{D}}} in the Hernandez–Leclerc category 𝒞 𝔤 0 {{\mathscr{C}_{\mathfrak{g}}^{0}}} of a quantum affine algebra U q ′ ⁢ ( 𝔤 ) {U_{q}^{\prime}({\mathfrak{g}})} , we prove that the set ℬ 𝒟 ⁢ ( 𝔤 ) {\mathcal{B}_{{\mathcal{D}}}({\mathfrak{g}})} of the isomorphism classes of simple modules in 𝒞 𝔤 0 {{\mathscr{C}_{\mathfrak{g}}^{0}}} has an extended crystal structure isomorphic to B ^ 𝔤 fin ⁢ ( ∞ ) {\widehat{B}_{{{\mathfrak{g}}_{\mathrm{fin}}}}(\infty)} . An explicit combinatorial description of the extended crystal ℬ 𝒟 ⁢ ( 𝔤 ) {\mathcal{B}_{{\mathcal{D}}}({\mathfrak{g}})} for affine type A n ( 1 ) {A_{n}^{(1)}} is given in terms of affine highest weights.
量子仿射代数的范畴晶体
摘要本文给出了量子仿射代数的一种新的分类晶体结构。我们引入了扩展晶体B ^(∞)的概念。 {\widehat{B}_{{\mathfrak{g}}}(\infty)} 对于任意量子群U q²(1 / 2) {我们……{q}({\mathfrak{g}})} ,它是晶体B¹(∞)的无穷个拷贝的乘积 {b (\infty)} . 获取完整的二元性数据 {{\mathcal{D}}} 在Hernandez-Leclerc范畴中 {{\mathscr{C}_{\mathfrak{g}}^{0}}} 量子仿射代数U q ' _ (_) {我们……{q}^{\prime}({\mathfrak{g}})} ,证明了集_ ()_ () {\mathcal{B}_{{\mathcal{D}}}({\mathfrak{g}})} 论上简单模的同构类 {{\mathscr{C}_{\mathfrak{g}}^{0}}} 具有与B ^ fin ^(∞)同构的扩展晶体结构 {\widehat{B}_{{{\mathfrak{g}}_{\mathrm{fin}}}}(\infty)} . 扩展晶体的显式组合描述(英文) {\mathcal{B}_{{\mathcal{D}}}({\mathfrak{g}})} 对于仿射型A n (1) {a……{n}^{(1)}} 用仿射最高权的形式给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信