Surface enrichment in hot-dipped metallic coatings investigated by Auger electron spectroscopy

R. Payling, P.D. Mercer
{"title":"Surface enrichment in hot-dipped metallic coatings investigated by Auger electron spectroscopy","authors":"R. Payling,&nbsp;P.D. Mercer","doi":"10.1016/0378-5963(85)90055-8","DOIUrl":null,"url":null,"abstract":"<div><p>The treatment, appearance, and corrosion resistance of metallic coatings are largely governed by the chemical composition of the surface. Auger electron spectroscopy shows that the surfaces of hot-dipped metallic coatings differ markedly from the bulk compositions of the coatings. For example, the surfaces of terne coatings, lead-tin alloys, contain little lead. The conventional galvanized coating, which is more than 99% zinc, has a predominantly aluminium oxide surface. Typical surface compositions of a range of hot-dipped metallic coatings are provided. A qualitative prediction of the dominant metallic species present on the surface of each of these coatings is presented in terms of the relative oxygen affinities of the metals. Theoretical equations for various mechanisms, such as atomic size mismatch, solubility, and oxidation, which could lead to surface segregation are considered, in order to place the experimental observations on a more quantitative basis.</p></div>","PeriodicalId":100105,"journal":{"name":"Applications of Surface Science","volume":"22 ","pages":"Pages 224-235"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-5963(85)90055-8","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Surface Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378596385900558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The treatment, appearance, and corrosion resistance of metallic coatings are largely governed by the chemical composition of the surface. Auger electron spectroscopy shows that the surfaces of hot-dipped metallic coatings differ markedly from the bulk compositions of the coatings. For example, the surfaces of terne coatings, lead-tin alloys, contain little lead. The conventional galvanized coating, which is more than 99% zinc, has a predominantly aluminium oxide surface. Typical surface compositions of a range of hot-dipped metallic coatings are provided. A qualitative prediction of the dominant metallic species present on the surface of each of these coatings is presented in terms of the relative oxygen affinities of the metals. Theoretical equations for various mechanisms, such as atomic size mismatch, solubility, and oxidation, which could lead to surface segregation are considered, in order to place the experimental observations on a more quantitative basis.

用俄歇能谱研究热浸金属涂层的表面富集
金属涂层的处理、外观和耐腐蚀性在很大程度上取决于表面的化学成分。俄歇电子能谱分析表明,热浸金属涂层的表面与涂层的本体成分有明显的不同。例如,金属涂层,铅锡合金的表面含有很少的铅。传统的镀锌涂层含有99%以上的锌,其表面主要是氧化铝。提供了一系列热浸金属涂层的典型表面成分。根据金属的相对氧亲和力,对每种涂层表面上存在的主要金属种类进行了定性预测。考虑了各种机制的理论方程,如原子尺寸不匹配,溶解度和氧化,这些可能导致表面偏析,以便将实验观察放在更定量的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信