Robust Motion Control of Robotic Systems with Environmental Interaction via Data-Driven Inversion of CPG

Sangyul Park, Hasun Lee, Dongjun Lee
{"title":"Robust Motion Control of Robotic Systems with Environmental Interaction via Data-Driven Inversion of CPG","authors":"Sangyul Park, Hasun Lee, Dongjun Lee","doi":"10.23919/ICCAS50221.2020.9268377","DOIUrl":null,"url":null,"abstract":"We propose CPG (central pattern generator) based robot control framework constructed based on: 1) the inverse model of the CPG that directly encodes resultant body motion of the robot in CPG parameters; and 2) the CPG parameter adaptation law that enforces robustness of the controller. These two components behaves as feedforward and feedback control for the CPG controlled robot, enabling us to achieve fast and robust generation of a desired body motion for robotic systems operated within complex environmental interaction. The inverse CPG model is constructed based on neural network along with autoencoder to efficiently deal with the dimension decrease from input to output of the model. Also, the CPG parameter adaptation is done with a concept of backpropagation, which is enabled by the adoption of smooth activation function for the inverse CPG model. For the development and verification of the proposed framework, simulation is conducted with two robotic systems, snake-like robot and pivotboard system.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"25 1","pages":"692-698"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose CPG (central pattern generator) based robot control framework constructed based on: 1) the inverse model of the CPG that directly encodes resultant body motion of the robot in CPG parameters; and 2) the CPG parameter adaptation law that enforces robustness of the controller. These two components behaves as feedforward and feedback control for the CPG controlled robot, enabling us to achieve fast and robust generation of a desired body motion for robotic systems operated within complex environmental interaction. The inverse CPG model is constructed based on neural network along with autoencoder to efficiently deal with the dimension decrease from input to output of the model. Also, the CPG parameter adaptation is done with a concept of backpropagation, which is enabled by the adoption of smooth activation function for the inverse CPG model. For the development and verification of the proposed framework, simulation is conducted with two robotic systems, snake-like robot and pivotboard system.
基于CPG数据驱动反演的环境交互作用下机器人系统鲁棒运动控制
我们提出了基于中心模式生成器(CPG)的机器人控制框架,该框架基于:1)CPG的逆模型,该模型将机器人的最终身体运动直接编码在CPG参数中;2)增强控制器鲁棒性的CPG参数自适应律。这两个组件分别作为CPG控制机器人的前馈和反馈控制,使我们能够在复杂的环境相互作用下实现机器人系统所需身体运动的快速和鲁棒生成。基于神经网络和自编码器构造了CPG逆模型,有效地解决了模型从输入到输出的降维问题。此外,CPG参数的自适应采用了反向传播的概念,通过对逆CPG模型采用平滑激活函数来实现。为了开发和验证所提出的框架,采用蛇形机器人和透视板系统两种机器人系统进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信