Sparse Hop Spanners for Unit Disk Graphs

A. Dumitrescu, Anirban Ghosh, Csaba D. T'oth
{"title":"Sparse Hop Spanners for Unit Disk Graphs","authors":"A. Dumitrescu, Anirban Ghosh, Csaba D. T'oth","doi":"10.4230/LIPIcs.ISAAC.2020.57","DOIUrl":null,"url":null,"abstract":"A unit disk graph $G$ on a given set of points $P$ in the plane is a geometric graph where an edge exists between two points $p,q \\in P$ if and only if $|pq| \\leq 1$. A subgraph $G'$ of $G$ is a $k$-hop spanner if and only if for every edge $pq\\in G$, the topological shortest path between $p,q$ in $G'$ has at most $k$ edges. We obtain the following results for unit disk graphs. \n(i) Every $n$-vertex unit disk graph has a $5$-hop spanner with at most $5.5n$ edges. We analyze the family of spanners constructed by Biniaz (WADS 2019) and improve the upper bound on the number of edges from $9n$ to $5.5n$. \n(ii) Using a new construction, we show that every $n$-vertex unit disk graph has a $3$-hop spanner with at most $11n$ edges. \n(iii) Every $n$-vertex unit disk graph has a $2$-hop spanner with $O(n^{3/2})$ edges. This is the first construction of a $2$-hop spanner with a subquadratic number of edges. \n(iv) For every sufficiently large $n$, there exists a set $P$ of $n$ points such that every plane hop spanner on $P$ has hop stretch factor at least $4$. Previously, no lower bound greater than $2$ was known. \n(v) For every point set on a circle, there exists a plane $4$-hop spanner. As such, this provides a tight bound for points on a circle. \n(vi) The maximum degree of $k$-hop spanners cannot be bounded above by a function of $k$.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"62 1","pages":"101808"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2020.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A unit disk graph $G$ on a given set of points $P$ in the plane is a geometric graph where an edge exists between two points $p,q \in P$ if and only if $|pq| \leq 1$. A subgraph $G'$ of $G$ is a $k$-hop spanner if and only if for every edge $pq\in G$, the topological shortest path between $p,q$ in $G'$ has at most $k$ edges. We obtain the following results for unit disk graphs. (i) Every $n$-vertex unit disk graph has a $5$-hop spanner with at most $5.5n$ edges. We analyze the family of spanners constructed by Biniaz (WADS 2019) and improve the upper bound on the number of edges from $9n$ to $5.5n$. (ii) Using a new construction, we show that every $n$-vertex unit disk graph has a $3$-hop spanner with at most $11n$ edges. (iii) Every $n$-vertex unit disk graph has a $2$-hop spanner with $O(n^{3/2})$ edges. This is the first construction of a $2$-hop spanner with a subquadratic number of edges. (iv) For every sufficiently large $n$, there exists a set $P$ of $n$ points such that every plane hop spanner on $P$ has hop stretch factor at least $4$. Previously, no lower bound greater than $2$ was known. (v) For every point set on a circle, there exists a plane $4$-hop spanner. As such, this provides a tight bound for points on a circle. (vi) The maximum degree of $k$-hop spanners cannot be bounded above by a function of $k$.
单位磁盘图的稀疏跳扳手
平面上给定一组点$P$上的单位圆盘图$G$是一个几何图,其中两点$p,q \in P$之间存在一条边当且仅当$|pq| \leq 1$。当且仅当对于每条边$pq\in G$, $G'$中$p,q$之间的拓扑最短路径最多有$k$条边时,$G$的子图$G'$是$k$ -hop扳手。对于单位磁盘图,我们得到以下结果。(i)每个$n$ -顶点单元磁盘图都有一个最多$5.5n$条边的$5$ -跳扳手。我们分析了Biniaz (WADS 2019)构建的扳手族,并将边数的上界从$9n$提高到$5.5n$。(ii)使用一个新的构造,我们证明了每个$n$ -顶点单元磁盘图都有一个$3$ -跳扳手,最多有$11n$条边。(iii)每个$n$ -顶点单元磁盘图都有一个$2$ -跳扳手,其边为$O(n^{3/2})$。这是具有次二次边数的$2$ -hop扳手的第一个构造。(iv)对于每一个足够大的$n$,存在一个由$n$点组成的集合$P$,使得$P$上的每一个平面跳跃扳手的跳跃拉伸因子至少为$4$。此前,不知道下限大于$2$。(v)对于圆上的每一个点集,存在一个平面$4$ -hop扳手。因此,这为圆上的点提供了一个紧密的边界。(vi) $k$ -hop扳手的最大程度不能以$k$的函数为界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信