Boundary $\mathcal{N} = 2$ theory, Floer homologies, affine algebras, and the Verlinde formula

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. Ashwinkumar, Kee-Seng Png, M. Tan
{"title":"Boundary $\\mathcal{N} = 2$ theory, Floer homologies, affine algebras, and the Verlinde formula","authors":"M. Ashwinkumar, Kee-Seng Png, M. Tan","doi":"10.4310/ATMP.2021.v25.n1.a1","DOIUrl":null,"url":null,"abstract":"Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N = 2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Mu˜noz’s theorem relating quantum and instanton Floer cohomology, (iii) their monopole counterparts, and (iv) their higher rank generalizations. In the case where the boundary is a Seifert manifold, one can also relate its instanton Floer homology to modules of an affine algebra via a 2d A-model with target the based loop group. As an offshoot, we will be able to demonstrate an action of the affine algebra on the quantum cohomology of the moduli space of flat connections on a Riemann surface, as well as derive the Verlinde formula.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2021.v25.n1.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N = 2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Mu˜noz’s theorem relating quantum and instanton Floer cohomology, (iii) their monopole counterparts, and (iv) their higher rank generalizations. In the case where the boundary is a Seifert manifold, one can also relate its instanton Floer homology to modules of an affine algebra via a 2d A-model with target the based loop group. As an offshoot, we will be able to demonstrate an action of the affine algebra on the quantum cohomology of the moduli space of flat connections on a Riemann surface, as well as derive the Verlinde formula.
边界$\mathcal{N} = 2$理论,花同调,仿射代数,和Verlinde公式
推广我们在[arXiv:1006.3313]中的思想,我们解释了带边界的四流形上的拓扑扭曲N = 2规范理论,将允许我们提供(i) atiya -Floer猜想,(ii)关于量子和瞬子Floer上同调的Mu ~ noz定理,(iii)它们的单极对偶,以及(iv)它们的高阶推广的纯粹物理证明。在边界为塞弗特流形的情况下,也可以通过以基环群为目标的二维a模型将其瞬时花同调与仿射代数的模联系起来。作为一个分支,我们将能够证明仿射代数对黎曼曲面上平坦连接的模空间的量子上同调的作用,并推导Verlinde公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信