A COMPARATIVE ANALYSIS OF REVENUE-BASED LAND INFORMATION SYSTEM INTEGRATING SENTINEL-2 AND PLANET IMAGERY FOR CROP CLASSIFICATION

Kusum, Sumit Kumar, Reenu Sharma, S. S. Hassan, B. Pateriya
{"title":"A COMPARATIVE ANALYSIS OF REVENUE-BASED LAND INFORMATION SYSTEM INTEGRATING SENTINEL-2 AND PLANET IMAGERY FOR CROP CLASSIFICATION","authors":"Kusum, Sumit Kumar, Reenu Sharma, S. S. Hassan, B. Pateriya","doi":"10.53390/ijes.v13i2.4","DOIUrl":null,"url":null,"abstract":"The study presents a revenue-based land information system integrated with the crop information. In this study, Sentinel-2 and Planet imagery have been used for crop classification using supervised classification. The accuracy attained from the Planet image was 90.67% and 82% for Sentinel 2, respectively. The study finds that the rice crop was grown a significant portion in the study area. The result shows the Murabba and Khasra based information of the existing Land use and Land cover information and Planet data provides better adjustment with the cadastral data. This integration includes essential information for identifying crops at the Khasra level and revenue base estimation of crop yield for the particular land parcel.","PeriodicalId":14445,"journal":{"name":"International Journal on Environmental Sciences","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53390/ijes.v13i2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents a revenue-based land information system integrated with the crop information. In this study, Sentinel-2 and Planet imagery have been used for crop classification using supervised classification. The accuracy attained from the Planet image was 90.67% and 82% for Sentinel 2, respectively. The study finds that the rice crop was grown a significant portion in the study area. The result shows the Murabba and Khasra based information of the existing Land use and Land cover information and Planet data provides better adjustment with the cadastral data. This integration includes essential information for identifying crops at the Khasra level and revenue base estimation of crop yield for the particular land parcel.
基于收益的sentinel-2与行星影像作物分类土地信息系统比较分析
本研究提出了一种基于收入的土地信息系统,该系统与作物信息相结合。在本研究中,利用Sentinel-2和Planet图像对作物进行监督分类。哨兵2号从行星图像获得的精度分别为90.67%和82%。研究发现,水稻作物在研究区域中占有相当大的比例。结果表明,基于Murabba和Khasra的现有土地利用和土地覆盖信息以及Planet数据可以更好地与地籍数据进行调整。这种整合包括识别Khasra级别作物的基本信息和特定地块作物产量的收入基础估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信