G. Han, Y. Yee, P. Guo, Yue Yang, L. Fan, Chunlei Zhan, Y. Yeo
{"title":"Enhancement of TFET performance using dopant profile-steepening implant and source dopant concentration engineering at tunneling junction","authors":"G. Han, Y. Yee, P. Guo, Yue Yang, L. Fan, Chunlei Zhan, Y. Yeo","doi":"10.1109/SNW.2010.5562594","DOIUrl":null,"url":null,"abstract":"All-Silicon Tunneling Field Effect Transistors (TFETs) with relatively high Ion values were fabricated by inserting an N+ pocket between source and channel to achieve sharpening or steepening of the source dopant profile. The source-side pocket or Dopant Profile Steepening Implant (DPSI) can be tuned to engineer the junction abruptness, boost the lateral electric field at the tunnel region, and reduce the tunneling width for Ion enhancement. By designing the DPSI dose and energy, we demonstrate that further enhancement in Ion values can be achieved.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"125 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
All-Silicon Tunneling Field Effect Transistors (TFETs) with relatively high Ion values were fabricated by inserting an N+ pocket between source and channel to achieve sharpening or steepening of the source dopant profile. The source-side pocket or Dopant Profile Steepening Implant (DPSI) can be tuned to engineer the junction abruptness, boost the lateral electric field at the tunnel region, and reduce the tunneling width for Ion enhancement. By designing the DPSI dose and energy, we demonstrate that further enhancement in Ion values can be achieved.