Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces

Haider Raza, H. Cecotti, G. Prasad
{"title":"Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces","authors":"Haider Raza, H. Cecotti, G. Prasad","doi":"10.1109/IJCNN.2015.7280737","DOIUrl":null,"url":null,"abstract":"A major problem in a brain-computer interface (BCI) based on electroencephalogram (EEG) recordings is the varying statistical properties of the signals during inter- or intra-session transfers that often lead to deteriorated BCI performances. A filter bank CSP (FBCSP) algorithm typically uses all the features from all the bands to extract and select robust features. In this paper, we evaluate the performance of four methods for frequency band selection applied to binary motor imagery classification: forward-addition (FA), backward-elimination (BE), the intersection and the union of the FA and BE. These methods automatically select and learn the best discriminative sets of frequency bands, and their corresponding CSP features. The performances of the proposed methods are evaluated on binary motor imagery classification using a publicly available real-world dataset (BCI competition 2008 dataset 2A). It is found that the BE method provides the best improvement resulting in an average classification accuracy increase of the BCI system over the FBCSP algorithm, from 77.06% to 79.09%.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"38 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

A major problem in a brain-computer interface (BCI) based on electroencephalogram (EEG) recordings is the varying statistical properties of the signals during inter- or intra-session transfers that often lead to deteriorated BCI performances. A filter bank CSP (FBCSP) algorithm typically uses all the features from all the bands to extract and select robust features. In this paper, we evaluate the performance of four methods for frequency band selection applied to binary motor imagery classification: forward-addition (FA), backward-elimination (BE), the intersection and the union of the FA and BE. These methods automatically select and learn the best discriminative sets of frequency bands, and their corresponding CSP features. The performances of the proposed methods are evaluated on binary motor imagery classification using a publicly available real-world dataset (BCI competition 2008 dataset 2A). It is found that the BE method provides the best improvement resulting in an average classification accuracy increase of the BCI system over the FBCSP algorithm, from 77.06% to 79.09%.
基于脑电图的脑机接口的正向加法和反向消去算法优化频带选择
基于脑电图(EEG)记录的脑机接口(BCI)的一个主要问题是在会话间或会话内传输过程中信号的统计特性的变化,这通常会导致BCI性能的恶化。滤波器组CSP (FBCSP)算法通常使用所有波段的所有特征来提取和选择鲁棒特征。在本文中,我们评估了四种用于二值运动图像分类的频带选择方法的性能:前向加法(FA)、后向消去(BE)、前向加法与后向消去的交集和并集。这些方法自动选择和学习最佳的判别频带集及其对应的CSP特征。使用公开可用的真实世界数据集(BCI competition 2008 dataset 2A)对所提出方法的二值运动图像分类性能进行了评估。结果发现,BE方法的改进效果最好,BCI系统的平均分类准确率比FBCSP算法提高了77.06%到79.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信