Yi-min Dai, Yangjin Yuan, Shu Jiang, Chi-Yu Li, Kui Guo
{"title":"Numerical Simulation Analysis of Wind Interference Effects on Low-rise Gable Roof Buildings","authors":"Yi-min Dai, Yangjin Yuan, Shu Jiang, Chi-Yu Li, Kui Guo","doi":"10.12783/dteees/eece2019/31566","DOIUrl":null,"url":null,"abstract":"A RNG k model,the Reynolds Averaged Navier-Stokes Equations (RANS) turbulence model, was added in software Fluent 6.3 to simulate the wind tunnel model of Tokyo Polytechnic University and the simulating results were compared to the wind tunnel test data. Then a detailed parametric study is performed for average pressure coefficient of two low-rise gable roof buildings in the same shape which only change the angle of the downstream building. The results show that the mean wind pressure coefficient of upstream building is hardly affected by the angle changing of the downstream building when the distance between buildings is larger than twice of building’s width, while the downstream building is affected relatively large especially at the corner area of ridge at small angles. Introduction It is well established understanding of the failure mechanism and distribution of surface pressure on isolated low-rise building through studies of experts and scholars around the world in recent decades. Such as Zhou and Nie[1] systematically studied the influence of low-rise gable roof building wind pressure coefficient and the surface shape coefficient with different wind attack angle, roof pitch, eave length, eave height, and ratio of wall length to width. Li [2]and Dai[3]did a lot of wind tunnel tests and field measurements about low-rise buildings during typhoons, and some laws that low-rise building’s local surface wind pressure influenced by slope angle and wind direction were summarized. However, low-rise buildings are normally built in large groups and it has complicated wind interference effects among buildings, so some conclusions which came from studying isolated buildings were hard to apply in the practical engineering. Thus some experts and scholars started researching wind field and wind environment about grouped buildings after 1980s and some research results were obtained. Tsutsumiet[4]and Ho[5]discussed interference effect between low-rise buildings and obtained that the influence of wind interference effect was large when buildings built in group, and it should be pay more attention on the research of wind interference effect. Zhao et al.[6]simulated a common two dual-slope roof which in the same shape before and after the light steel plant layout with ANSYS Fluent software, obtained that wind interference should fully considered when the distance between two buildings less than twice the building’s width. Based on software of Fluent 6.3, this study simulated the wind tunnel model of Tokyo Polytechnic University and compared the results to wind tunnel data. Then mean wind pressure coefficient of two low-rise gable roof buildings in the same shape was simulated which only changing the angle of the downstream building, analysed the influence of angle changing to upstream and downstream buildings. It’s expected that the results would provide reference value for studying grouped low-rise buildings. Analysis of Numerical Simulation about Interference Effect on Gable Roof Buildings Buildings are generally built in large groups and often built in similar shapes in one area, but the","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/eece2019/31566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A RNG k model,the Reynolds Averaged Navier-Stokes Equations (RANS) turbulence model, was added in software Fluent 6.3 to simulate the wind tunnel model of Tokyo Polytechnic University and the simulating results were compared to the wind tunnel test data. Then a detailed parametric study is performed for average pressure coefficient of two low-rise gable roof buildings in the same shape which only change the angle of the downstream building. The results show that the mean wind pressure coefficient of upstream building is hardly affected by the angle changing of the downstream building when the distance between buildings is larger than twice of building’s width, while the downstream building is affected relatively large especially at the corner area of ridge at small angles. Introduction It is well established understanding of the failure mechanism and distribution of surface pressure on isolated low-rise building through studies of experts and scholars around the world in recent decades. Such as Zhou and Nie[1] systematically studied the influence of low-rise gable roof building wind pressure coefficient and the surface shape coefficient with different wind attack angle, roof pitch, eave length, eave height, and ratio of wall length to width. Li [2]and Dai[3]did a lot of wind tunnel tests and field measurements about low-rise buildings during typhoons, and some laws that low-rise building’s local surface wind pressure influenced by slope angle and wind direction were summarized. However, low-rise buildings are normally built in large groups and it has complicated wind interference effects among buildings, so some conclusions which came from studying isolated buildings were hard to apply in the practical engineering. Thus some experts and scholars started researching wind field and wind environment about grouped buildings after 1980s and some research results were obtained. Tsutsumiet[4]and Ho[5]discussed interference effect between low-rise buildings and obtained that the influence of wind interference effect was large when buildings built in group, and it should be pay more attention on the research of wind interference effect. Zhao et al.[6]simulated a common two dual-slope roof which in the same shape before and after the light steel plant layout with ANSYS Fluent software, obtained that wind interference should fully considered when the distance between two buildings less than twice the building’s width. Based on software of Fluent 6.3, this study simulated the wind tunnel model of Tokyo Polytechnic University and compared the results to wind tunnel data. Then mean wind pressure coefficient of two low-rise gable roof buildings in the same shape was simulated which only changing the angle of the downstream building, analysed the influence of angle changing to upstream and downstream buildings. It’s expected that the results would provide reference value for studying grouped low-rise buildings. Analysis of Numerical Simulation about Interference Effect on Gable Roof Buildings Buildings are generally built in large groups and often built in similar shapes in one area, but the