Multiscale methods and survival criteria for diffusive species in striped patterns

L. A. R. D. Santana, Yu.N. Bozhkov, W. C. Ferreira
{"title":"Multiscale methods and survival criteria for diffusive species in striped patterns","authors":"L. A. R. D. Santana, Yu.N. Bozhkov, W. C. Ferreira","doi":"10.1155/AMRX.2005.11","DOIUrl":null,"url":null,"abstract":"We analyze mathematical models describing the behavior of populations in spatially heterogeneous environments whose most and least favourable regions for the development of the species alternate in small length scales compared to the dimensions ofrefuge candidate regions. We use homogenization methods and obtain a partial differential equation with constant coefficients. This allows us to study the survival or extinction of a population in a simpler way than performing a direct analysis of the original models in terms of differential equations involving rapidly varying coefficients.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"81 1","pages":"11-37"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/AMRX.2005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze mathematical models describing the behavior of populations in spatially heterogeneous environments whose most and least favourable regions for the development of the species alternate in small length scales compared to the dimensions ofrefuge candidate regions. We use homogenization methods and obtain a partial differential equation with constant coefficients. This allows us to study the survival or extinction of a population in a simpler way than performing a direct analysis of the original models in terms of differential equations involving rapidly varying coefficients.
条纹扩散物种的多尺度方法和生存标准
我们分析了描述空间异质环境中种群行为的数学模型,这些环境中最有利于物种发展的区域和最不利于物种发展的区域在较小的长度尺度上交替,与避难所候选区域的尺寸相比。利用均匀化方法,得到了一个常系数偏微分方程。这使我们可以用一种更简单的方法来研究种群的生存或灭绝,而不是用包含快速变化系数的微分方程对原始模型进行直接分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信