Incorrect Inferences When Using Generated Regressors in Accounting Research

Wei Chen, P. Hribar, Sam Melessa
{"title":"Incorrect Inferences When Using Generated Regressors in Accounting Research","authors":"Wei Chen, P. Hribar, Sam Melessa","doi":"10.2139/ssrn.3724730","DOIUrl":null,"url":null,"abstract":"We analyze the bias associated with the use of generated regressors, i.e., independent variables generated from a first-step auxiliary regression, in accounting research settings. Widely used generated regressors in accounting include discretionary accruals, the Dechow and Dichev [2002] measure of accrual quality, asymmetric timeliness coefficients, the Khan and Watts [2009] C-score, earnings persistence coefficients, real earnings management proxies, discretionary book-tax differences, and predicted values capturing litigation risk, bankruptcy risk, and the likelihood of a tax shelter. Under general conditions, the presence of generated regressors does not affect the consistency of coefficient estimates. However, commonly used generated regressors can bias standard errors towards zero, producing type I errors. We discuss various types of generated regressors (predicted values, residuals, coefficients, etc.) and demonstrate the associated standard error bias and factors affecting the bias using simple regression models and simulation analyses. We also show the bias can be substantial in common accounting settings by examining the magnitude of the bias when examining the effect of litigation risk on management forecast characteristics. Finally, we outline two corrections for the bias and show how the corrections, including bootstrapping standard errors, improve inferences.","PeriodicalId":12319,"journal":{"name":"Financial Accounting eJournal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3724730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We analyze the bias associated with the use of generated regressors, i.e., independent variables generated from a first-step auxiliary regression, in accounting research settings. Widely used generated regressors in accounting include discretionary accruals, the Dechow and Dichev [2002] measure of accrual quality, asymmetric timeliness coefficients, the Khan and Watts [2009] C-score, earnings persistence coefficients, real earnings management proxies, discretionary book-tax differences, and predicted values capturing litigation risk, bankruptcy risk, and the likelihood of a tax shelter. Under general conditions, the presence of generated regressors does not affect the consistency of coefficient estimates. However, commonly used generated regressors can bias standard errors towards zero, producing type I errors. We discuss various types of generated regressors (predicted values, residuals, coefficients, etc.) and demonstrate the associated standard error bias and factors affecting the bias using simple regression models and simulation analyses. We also show the bias can be substantial in common accounting settings by examining the magnitude of the bias when examining the effect of litigation risk on management forecast characteristics. Finally, we outline two corrections for the bias and show how the corrections, including bootstrapping standard errors, improve inferences.
在会计研究中使用生成回归量时的错误推论
我们分析与使用生成的回归相关的偏差,即,从第一步辅助回归产生的自变量,在会计研究设置。会计中广泛使用的生成回归因子包括可操纵性应计项目、Dechow和Dichev[2002]衡量应计质量的方法、不对称及时性系数、Khan和Watts [2009] C-score、盈余持续性系数、实际盈余管理代理、可操纵性账面税收差异,以及反映诉讼风险、破产风险和避税可能性的预测值。在一般情况下,产生的回归量的存在不影响系数估计的一致性。然而,常用的生成回归量会使标准误差偏向于零,从而产生I型误差。我们讨论了各种类型的生成回归量(预测值、残差、系数等),并使用简单的回归模型和仿真分析演示了相关的标准误差偏差和影响偏差的因素。我们还表明,在检查诉讼风险对管理层预测特征的影响时,通过检查偏差的大小,偏差在常见会计设置中可能是实质性的。最后,我们概述了偏差的两种修正,并展示了包括自举标准误差在内的修正如何改进推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信