Poset topology of $s$ weak order via SB-labelings

IF 0.4 Q4 MATHEMATICS, APPLIED
Stephen Lacina
{"title":"Poset topology of $s$ weak order via SB-labelings","authors":"Stephen Lacina","doi":"10.4310/joc.2022.v13.n3.a3","DOIUrl":null,"url":null,"abstract":"Ceballos and Pons generalized weak order on permutations to a partial order on certain labeled trees, thereby introducing a new class of lattices called $s$-weak order. They also generalized the Tamari lattice by defining a particular sublattice of $s$-weak order called the $s$-Tamari lattice. We prove that the homotopy type of each open interval in $s$-weak order and in the $s$-Tamari lattice is either a ball or sphere. We do this by giving $s$-weak order and the $s$-Tamari lattice a type of edge labeling known as an SB-labeling. We characterize which intervals are homotopy equivalent to spheres and which are homotopy equivalent to balls; we also determine the dimension of the spheres for the intervals yielding spheres.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"36 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n3.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Ceballos and Pons generalized weak order on permutations to a partial order on certain labeled trees, thereby introducing a new class of lattices called $s$-weak order. They also generalized the Tamari lattice by defining a particular sublattice of $s$-weak order called the $s$-Tamari lattice. We prove that the homotopy type of each open interval in $s$-weak order and in the $s$-Tamari lattice is either a ball or sphere. We do this by giving $s$-weak order and the $s$-Tamari lattice a type of edge labeling known as an SB-labeling. We characterize which intervals are homotopy equivalent to spheres and which are homotopy equivalent to balls; we also determine the dimension of the spheres for the intervals yielding spheres.
基于sb标记的$s$弱序的偏序拓扑
Ceballos和Pons将置换上的弱序推广到某些标记树上的偏序,从而引入了一类新的格,称为$s$-弱序。他们还通过定义$s$-弱阶的特殊子格(称为$s$-Tamari格)推广了Tamari格。证明了$s$-弱阶和$s$-Tamari格上的每个开区间的同伦类型是球或球。我们通过给$s$-弱序和$s$-Tamari晶格一种称为sb -标记的边标记来做到这一点。我们刻画了哪些区间同伦等价于球,哪些区间同伦等价于球;我们还确定了区间屈服球的球的尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信