Analysis of the Monte-Carlo Error in a Hybrid Semi-Lagrangian Scheme

Charles-Edouard Br'ehier, E. Faou
{"title":"Analysis of the Monte-Carlo Error in a Hybrid Semi-Lagrangian Scheme","authors":"Charles-Edouard Br'ehier, E. Faou","doi":"10.1093/AMRX/ABV001","DOIUrl":null,"url":null,"abstract":"We consider Monte-Carlo discretizations of partial differential equations based on a combination of semi-lagrangian schemes and probabilistic representations of the solutions. We study the Monte-Carlo error in a simple case, and show that under an anti-CFL condition on the time-step $\\delta t$ and on the mesh size $\\delta x$ and for $N$ - the number of realizations - reasonably large, we control this error by a term of order $\\mathcal{O}(\\sqrt{\\delta t /N})$. We also provide some numerical experiments to confirm the error estimate, and to expose some examples of equations which can be treated by the numerical method.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"12 1","pages":"167-203"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABV001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider Monte-Carlo discretizations of partial differential equations based on a combination of semi-lagrangian schemes and probabilistic representations of the solutions. We study the Monte-Carlo error in a simple case, and show that under an anti-CFL condition on the time-step $\delta t$ and on the mesh size $\delta x$ and for $N$ - the number of realizations - reasonably large, we control this error by a term of order $\mathcal{O}(\sqrt{\delta t /N})$. We also provide some numerical experiments to confirm the error estimate, and to expose some examples of equations which can be treated by the numerical method.
混合半拉格朗日格式的蒙特卡罗误差分析
我们考虑基于半拉格朗日格式和解的概率表示组合的偏微分方程的蒙特卡罗离散化。我们在一个简单的例子中研究了蒙特卡罗误差,并表明在时间步长$\delta t$和网格尺寸$\delta x$上的反cfl条件下,对于$N$ -实现的数量-相当大,我们通过一个阶项$\mathcal{O}(\sqrt{\delta t /N})$来控制该误差。我们还提供了一些数值实验来证实误差估计,并给出了一些可以用数值方法处理的方程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信