{"title":"General law of growth and replication. Growth equation and its applications","authors":"Yuri K. Shestopaloff","doi":"10.1142/S1793048012500051","DOIUrl":null,"url":null,"abstract":"We present significantly advanced studies of the previously introduced physical growth mechanism and unite it with biochemical growth factors. Obtained results allowed formulating the general growth law which governs growth and evolutional development of all living organisms, their organs and systems. It was discovered that the growth cycle is predefined by the distribution of nutritional resources between maintenance needs and biomass production. This distribution is quantitatively defined by the growth ratio parameter, which depends on the geometry of an organism, phase of growth and, indirectly, organism's biochemical machinery. The amount of produced biomass, in turn, defines the composition of biochemical reactions. Changing amount of nutrients diverted to biomass production is what forces organisms to proceed through the whole growth and replication cycle. The growth law can be formulated as follows: the rate of growth is proportional to influx of nutrients and growth ratio. Considering specific biochemical components of different organisms, we find influxes of required nutrients and substitute them into the growth equation; then, we compute growth curves for amoeba, wild type fission yeast, fission yeast's mutant. In all cases, predicted growth curves correspond very well to experimental data. Obtained results prove validity and fundamental scientific value of the discovery.","PeriodicalId":8460,"journal":{"name":"arXiv: Other Quantitative Biology","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048012500051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We present significantly advanced studies of the previously introduced physical growth mechanism and unite it with biochemical growth factors. Obtained results allowed formulating the general growth law which governs growth and evolutional development of all living organisms, their organs and systems. It was discovered that the growth cycle is predefined by the distribution of nutritional resources between maintenance needs and biomass production. This distribution is quantitatively defined by the growth ratio parameter, which depends on the geometry of an organism, phase of growth and, indirectly, organism's biochemical machinery. The amount of produced biomass, in turn, defines the composition of biochemical reactions. Changing amount of nutrients diverted to biomass production is what forces organisms to proceed through the whole growth and replication cycle. The growth law can be formulated as follows: the rate of growth is proportional to influx of nutrients and growth ratio. Considering specific biochemical components of different organisms, we find influxes of required nutrients and substitute them into the growth equation; then, we compute growth curves for amoeba, wild type fission yeast, fission yeast's mutant. In all cases, predicted growth curves correspond very well to experimental data. Obtained results prove validity and fundamental scientific value of the discovery.