Explicit transient thermal simulation of liquid-cooled 3D ICs

Alain Fourmigue, G. Beltrame, G. Nicolescu
{"title":"Explicit transient thermal simulation of liquid-cooled 3D ICs","authors":"Alain Fourmigue, G. Beltrame, G. Nicolescu","doi":"10.7873/DATE.2013.283","DOIUrl":null,"url":null,"abstract":"The high heat flux and compact structure of three-dimensional circuits (3D ICs) make conventional air-cooled devices more subsceptible to overheating. Liquid cooling is an alternative that can improve heat dissipation, and reduce thermal issues. Fast and accurate thermal models are needed to appropriately dimension the cooling system at design time. Several models have been proposed to study different designs, but generally with low simulation performance. In this paper, we present an efficient model of the transient thermal behaviour of liquid-cooled 3D ICs. In our experiments, our approach is 60 times faster and uses 600 times less memory than state-of-the-art models, while maintaining the same level of accuracy.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"8 1 1","pages":"1385-1390"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The high heat flux and compact structure of three-dimensional circuits (3D ICs) make conventional air-cooled devices more subsceptible to overheating. Liquid cooling is an alternative that can improve heat dissipation, and reduce thermal issues. Fast and accurate thermal models are needed to appropriately dimension the cooling system at design time. Several models have been proposed to study different designs, but generally with low simulation performance. In this paper, we present an efficient model of the transient thermal behaviour of liquid-cooled 3D ICs. In our experiments, our approach is 60 times faster and uses 600 times less memory than state-of-the-art models, while maintaining the same level of accuracy.
液冷三维集成电路的显式瞬态热模拟
三维电路的高热流密度和紧凑的结构使得传统的风冷器件更容易过热。液体冷却是一种替代方案,可以改善散热,减少热问题。在设计时,需要快速准确的热模型来适当地确定冷却系统的尺寸。人们提出了几种模型来研究不同的设计,但普遍具有较低的仿真性能。在本文中,我们提出了一个有效的液冷三维集成电路的瞬态热行为模型。在我们的实验中,我们的方法比最先进的模型快60倍,使用的内存少600倍,同时保持相同的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信