Deep learning and complex network theory based analysis on socialized manufacturing resources utilisations and an application case study

Maolin Yang, Auwal H. Abubakar, P. Jiang
{"title":"Deep learning and complex network theory based analysis on socialized manufacturing resources utilisations and an application case study","authors":"Maolin Yang, Auwal H. Abubakar, P. Jiang","doi":"10.1177/1063293X211003194","DOIUrl":null,"url":null,"abstract":"Social manufacturing is characterized by its capability of utilizing socialized manufacturing resources to achieve value adding. Recently, a new type of social manufacturing pattern emerges and shows potential for core factories to improve their limited manufacturing capabilities by utilizing the resources from outside socialized manufacturing resource communities. However, the core factories need to analyze the resource characteristics of the socialized resource communities before making operation plans, and this is challenging due to the unaffiliated and self-driven characteristics of the resource providers in socialized resource communities. In this paper, a deep learning and complex network based approach is established to address this challenge by using socialized designer community for demonstration. Firstly, convolutional neural network models are trained to identify the design resource characteristics of each socialized designer in designer community according to the interaction texts posted by the socialized designer on internet platforms. During the process, an iterative dataset labelling method is established to reduce the time cost for training set labelling. Secondly, complex networks are used to model the design resource characteristics of the community according to the resource characteristics of all the socialized designers in the community. Two real communities from RepRap 3D printer project are used as case study.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"101 1","pages":"236 - 248"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X211003194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Social manufacturing is characterized by its capability of utilizing socialized manufacturing resources to achieve value adding. Recently, a new type of social manufacturing pattern emerges and shows potential for core factories to improve their limited manufacturing capabilities by utilizing the resources from outside socialized manufacturing resource communities. However, the core factories need to analyze the resource characteristics of the socialized resource communities before making operation plans, and this is challenging due to the unaffiliated and self-driven characteristics of the resource providers in socialized resource communities. In this paper, a deep learning and complex network based approach is established to address this challenge by using socialized designer community for demonstration. Firstly, convolutional neural network models are trained to identify the design resource characteristics of each socialized designer in designer community according to the interaction texts posted by the socialized designer on internet platforms. During the process, an iterative dataset labelling method is established to reduce the time cost for training set labelling. Secondly, complex networks are used to model the design resource characteristics of the community according to the resource characteristics of all the socialized designers in the community. Two real communities from RepRap 3D printer project are used as case study.
基于深度学习和复杂网络理论的社会化制造资源利用分析及应用案例研究
社会化制造的特点是利用社会化制造资源实现价值增值的能力。最近出现了一种新型的社会化制造模式,核心工厂利用社会化制造资源社区之外的资源来提高其有限的制造能力。然而,核心工厂在制定运营计划前需要对社会化资源社区的资源特征进行分析,而社会化资源社区的资源提供者具有非隶属性和自我驱动性,这给核心工厂的运营规划带来了挑战。本文建立了一种基于深度学习和复杂网络的方法,通过使用社会化设计师社区进行演示来解决这一挑战。首先,根据社会化设计师在互联网平台上发布的交互文本,训练卷积神经网络模型,识别设计师社区中每个社会化设计师的设计资源特征。在此过程中,建立了一种迭代的数据集标注方法,以减少训练集标注的时间成本。其次,根据社区中所有社会化设计师的资源特征,利用复杂网络对社区的设计资源特征进行建模;以RepRap 3D打印机项目中的两个真实社区为例进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信