Analysis of Deregistration Attacks in 5G Standalone Non-Public Network

Keewon Kim, Kyungmin Park, Tae-Keun Park
{"title":"Analysis of Deregistration Attacks in 5G Standalone Non-Public Network","authors":"Keewon Kim, Kyungmin Park, Tae-Keun Park","doi":"10.9708/JKSCI.2021.26.09.081","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the possibility of deregistration attack in 5G SNPN (Standalone Non-Public Network) based on 3GPP standard document. In the deregistraion attack, the attacker pretends to be a UE that is normally registered with AMF (Access and Mobility Management Function) and attempts to establish a spoofed RRC (Radio Resource Control) connection, causing AMF to deregister the existing UE. The existing deregistration attack attempts a spoofed RRC connection to the AMF in which the UE is registered. In addition, this paper analyzes whether deregistration attack is possible even when an attacker attempts to establish a spoofed RRC connection to a new AMF that is different from the registered AMF. When the 5G mobile communication network system is implemented by faithfully complying with the 3GPP standard, it is determined that a deregistration attack of a UE is impossible.","PeriodicalId":17254,"journal":{"name":"Journal of the Korea Society of Computer and Information","volume":"7 1","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Society of Computer and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9708/JKSCI.2021.26.09.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze the possibility of deregistration attack in 5G SNPN (Standalone Non-Public Network) based on 3GPP standard document. In the deregistraion attack, the attacker pretends to be a UE that is normally registered with AMF (Access and Mobility Management Function) and attempts to establish a spoofed RRC (Radio Resource Control) connection, causing AMF to deregister the existing UE. The existing deregistration attack attempts a spoofed RRC connection to the AMF in which the UE is registered. In addition, this paper analyzes whether deregistration attack is possible even when an attacker attempts to establish a spoofed RRC connection to a new AMF that is different from the registered AMF. When the 5G mobile communication network system is implemented by faithfully complying with the 3GPP standard, it is determined that a deregistration attack of a UE is impossible.
5G独立非公网注销攻击分析
本文分析了基于3GPP标准文档的5G SNPN (Standalone Non-Public Network)中注销攻击的可能性。在注销攻击中,攻击者假装是一个正常注册在AMF (Access and Mobility Management Function)上的终端,并试图建立一个欺骗的RRC (Radio Resource Control)连接,导致AMF注销现有的终端。现有的注销攻击试图通过欺骗RRC连接到注册UE的AMF。此外,本文还分析了当攻击者试图建立一个与已注册AMF不同的新AMF的欺骗RRC连接时,注销攻击是否可能发生。当5G移动通信网络系统忠实地遵循3GPP标准实施时,确定了不可能对终端进行注销攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信