Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration

Miti Mazmudar, Thomas Humphries, Jiaxiang Liu, Matthew Rafuse, Xi He
{"title":"Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration","authors":"Miti Mazmudar, Thomas Humphries, Jiaxiang Liu, Matthew Rafuse, Xi He","doi":"10.48550/arXiv.2211.15732","DOIUrl":null,"url":null,"abstract":"\n Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine,\n CacheDP\n , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that\n CacheDP\n can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"38 1","pages":"574-586"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine, CacheDP , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that CacheDP can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.
缓存我,如果你可以:准确性感知推理引擎的差异私有数据探索
差分隐私(DP)允许数据分析人员查询包含用户敏感信息的数据库,同时为用户提供可量化的隐私保证。最近的交互式DP系统(如APEx)提供了查询响应的准确性保证,但由于它们独立于过去的查询处理传入查询,因此无法在有限的总隐私预算下支持大量查询。我们提出了一个交互式的,具有准确性感知的数据处理查询引擎,CacheDP,它利用过去响应的差异私有缓存,以较低的隐私预算来回答当前的工作负载,同时满足严格的准确性保证。通过新颖的缓存感知DP成本优化,我们将复杂的DP机制与结构化缓存集成在一起。我们的全面评估表明,与相关工作相比,CacheDP可以准确地响应各种工作负载序列,同时降低隐私损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信