A study on the physical and biogeochemical responses of the Bay of Bengal due to cyclone Madi

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Roy Chowdhury, S. Prasanna Kumar, A. Chakraborty
{"title":"A study on the physical and biogeochemical responses of the Bay of Bengal due to cyclone Madi","authors":"R. Roy Chowdhury, S. Prasanna Kumar, A. Chakraborty","doi":"10.1080/1755876X.2020.1817659","DOIUrl":null,"url":null,"abstract":"ABSTRACT Madi was a category-2 cyclonic storm formed over the south-western Bay of Bengal (BoB) in December 2013. It formed on 6th December as a depression, and by 8th December it became a very severe cyclonic storm. Some unique features of Madi were: (a) an unexpected reduction in the intensity during its north-westward movement, (b) sudden change in track by almost 180o in a south-westerly direction, and (c) swift dissipation in the open ocean while moving over cold-core eddies during its south-westward movement. The rapid weakening in intensity before track reversal occurred mainly due to its passage over cold-core eddies, where the upper-ocean heat content was reduced due to eddy-pumping of cold water from the subsurface. An analysis of the eddy-feedback factor reiterated that the slower movement of the cyclone was due to the cold-core eddy. When the cyclone entered into the cold-core eddy region, it slowed-down and changed its track towards a south-westerly direction under the influence of prevailing north-easterly winds. The biogeochemical response of Madi estimated using the satellite remote sensing and Bio Argo data showed an increase in Chlorophyll-a (Chl-a) concentration from 0.2-0.4–2.7 mg/m3, while the net primary productivity (NPP) increased from 320 to 2500 mg C/m2 /day, both of which were about 7 and 8 times respectively higher than the before-cyclone values. The CO2 flux showed a 4 times increase from its pre-cyclone value of 3.5 mmol/m2 /day, indicating that BoB becomes a strong source to the atmosphere during the cyclone Madi period.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2020.1817659","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT Madi was a category-2 cyclonic storm formed over the south-western Bay of Bengal (BoB) in December 2013. It formed on 6th December as a depression, and by 8th December it became a very severe cyclonic storm. Some unique features of Madi were: (a) an unexpected reduction in the intensity during its north-westward movement, (b) sudden change in track by almost 180o in a south-westerly direction, and (c) swift dissipation in the open ocean while moving over cold-core eddies during its south-westward movement. The rapid weakening in intensity before track reversal occurred mainly due to its passage over cold-core eddies, where the upper-ocean heat content was reduced due to eddy-pumping of cold water from the subsurface. An analysis of the eddy-feedback factor reiterated that the slower movement of the cyclone was due to the cold-core eddy. When the cyclone entered into the cold-core eddy region, it slowed-down and changed its track towards a south-westerly direction under the influence of prevailing north-easterly winds. The biogeochemical response of Madi estimated using the satellite remote sensing and Bio Argo data showed an increase in Chlorophyll-a (Chl-a) concentration from 0.2-0.4–2.7 mg/m3, while the net primary productivity (NPP) increased from 320 to 2500 mg C/m2 /day, both of which were about 7 and 8 times respectively higher than the before-cyclone values. The CO2 flux showed a 4 times increase from its pre-cyclone value of 3.5 mmol/m2 /day, indicating that BoB becomes a strong source to the atmosphere during the cyclone Madi period.
气旋马迪对孟加拉湾的物理和生物地球化学响应研究
马迪是2013年12月在孟加拉湾西南部形成的二级气旋风暴。它于12月6日形成低气压,到12月8日成为一场非常强烈的气旋风暴。马迪的一些独特特征是:(a)在向西北移动期间强度意外减弱,(b)在向西南方向突然改变路径近180度,以及(c)在向西南移动期间在冷核涡流上移动时在公海迅速消散。路径反转前强度的快速减弱主要是由于其经过冷核涡旋,由于涡旋从地下泵出冷水,上层海洋热含量减少。对涡旋反馈因子的分析再次表明,气旋移动速度较慢是由于冷核涡旋。当气旋进入冷核涡区后,在盛行东北风的影响下,气旋速度减慢并改变路径向西南方向移动。利用卫星遥感和Bio Argo数据估算的马迪湖生物地球化学响应显示,叶绿素-a (Chl-a)浓度从0.2 ~ 0.4 ~ 2.7 mg/m3增加,净初级生产力(NPP)从320 ~ 2500 mg C/m2 /d增加,分别是气旋前的7倍和8倍。CO2通量较气旋前的3.5 mmol/m2 /d增加了4倍,表明BoB在气旋马迪期间成为大气的强源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信