{"title":"Nanoresotron - novel concept of optical nanoantenna excitation through the dissipative instability of DC current","authors":"I. Smetanin, A. Bouhelier, I. Protsenko, A. Uskov","doi":"10.1109/METAMATERIALS.2016.7746392","DOIUrl":null,"url":null,"abstract":"We propose a novel physical mechanism for the excitation of optical nanoantenna which utilizes the dissipative instability of DC electric current in the quantum well. Realization of this approach in nanoplasmonics can lead to a new device - nanoresotron.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"21 1","pages":"340-342"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel physical mechanism for the excitation of optical nanoantenna which utilizes the dissipative instability of DC electric current in the quantum well. Realization of this approach in nanoplasmonics can lead to a new device - nanoresotron.