Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing

Q3 Mathematics
Mohamed Hamdouche, P. Henry-Labordère, H. Pham
{"title":"Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing","authors":"Mohamed Hamdouche, P. Henry-Labordère, H. Pham","doi":"10.1080/1350486X.2023.2239850","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop policy gradients methods for stochastic control with exit time in a model-free setting. We propose two types of algorithms for learning either directly the optimal policy or by learning alternately the value function (critic) and the optimal control (actor). The use of randomized policies is crucial for overcoming notably the issue related to the exit time in the gradient computation. We demonstrate the effectiveness of our approach by implementing our numerical schemes in the application to the problem of share repurchase pricing. Our results show that the proposed policy gradient methods outperform PDE or other neural networks techniques in a model-based setting. Furthermore, our algorithms are flexible enough to incorporate realistic market conditions like, e.g., price impact or transaction costs.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"7 1","pages":"439 - 456"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2023.2239850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT We develop policy gradients methods for stochastic control with exit time in a model-free setting. We propose two types of algorithms for learning either directly the optimal policy or by learning alternately the value function (critic) and the optimal control (actor). The use of randomized policies is crucial for overcoming notably the issue related to the exit time in the gradient computation. We demonstrate the effectiveness of our approach by implementing our numerical schemes in the application to the problem of share repurchase pricing. Our results show that the proposed policy gradient methods outperform PDE or other neural networks techniques in a model-based setting. Furthermore, our algorithms are flexible enough to incorporate realistic market conditions like, e.g., price impact or transaction costs.
具有退出时间的随机控制策略梯度学习方法及其在股票回购定价中的应用
摘要:研究无模型条件下具有退出时间的随机控制的策略梯度方法。我们提出了两种算法,要么直接学习最优策略,要么交替学习价值函数(批评家)和最优控制(行动者)。随机策略的使用对于克服与梯度计算中的退出时间相关的问题至关重要。我们通过在股票回购定价问题的应用中实现我们的数值方案来证明我们方法的有效性。我们的研究结果表明,在基于模型的设置中,提出的策略梯度方法优于PDE或其他神经网络技术。此外,我们的算法足够灵活,可以纳入现实的市场条件,例如价格影响或交易成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信