Optimization of Periodic Synchronization of UAV’s Clock by Differential Phase Method

IF 0.1 Q4 MATHEMATICS, APPLIED
A. I. Sulimov
{"title":"Optimization of Periodic Synchronization of UAV’s Clock by Differential Phase Method","authors":"A. I. Sulimov","doi":"10.26907/2541-7746.2021.3-4.231-249","DOIUrl":null,"url":null,"abstract":"The article considers the problem of designing a synchronized aerial wireless sensor network of unmanned aerial vehicles (UAVs) with centralized control by a master unit. A 10-ns synchronization precision must be ensured for all units within the aerial network in the time intervals of at least 100 s. To achieve it, the master unit periodically generates a synchronizing signal with two coherent sine tones of different frequencies that helps the slave UAVs to adjust their clocks. High-stability oven-controlled crystal quartz oscillators (OCXO) are used as onboard clocks for the UAVs. The study aims to assess the optimal frequency separation of the coherent synchronizing tones that provides the best possible noise immunity of the measured data with a reliable ambiguity resolution of the carrier phase. The problem is solved using a computer simulation of periodic synchronization of the slave UAVs by differential phase measurements associated with the reference time scale of the master UAV in order to suppress possible random clock offsets.According to the simulation results, aside from the positioning errors of the UAVs, the systematic Doppler phase shift of the synchronizing signal in the propagation channel is the main obstacle to differential phase synchronization. Depending on the efficiency of the Doppler phase shift compensation, the optimum frequency separation of the synchronizing tones ranges from 10 to 1500 MHz with the correspondent synchronization precision achieved from 0.25 to 2.65 ns at the observation time of up to 100 s. It is shown that the effective compensation for the Doppler shift requires periodic channel estimation for at least every 10 ms. For most prac-tical applications, however, adjusting the slave clock every 5 s using two coherent synchronizing sine tones separated by 400–500 MHz results in a satisfactory quality of synchronization.","PeriodicalId":41863,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","volume":"20 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2021.3-4.231-249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers the problem of designing a synchronized aerial wireless sensor network of unmanned aerial vehicles (UAVs) with centralized control by a master unit. A 10-ns synchronization precision must be ensured for all units within the aerial network in the time intervals of at least 100 s. To achieve it, the master unit periodically generates a synchronizing signal with two coherent sine tones of different frequencies that helps the slave UAVs to adjust their clocks. High-stability oven-controlled crystal quartz oscillators (OCXO) are used as onboard clocks for the UAVs. The study aims to assess the optimal frequency separation of the coherent synchronizing tones that provides the best possible noise immunity of the measured data with a reliable ambiguity resolution of the carrier phase. The problem is solved using a computer simulation of periodic synchronization of the slave UAVs by differential phase measurements associated with the reference time scale of the master UAV in order to suppress possible random clock offsets.According to the simulation results, aside from the positioning errors of the UAVs, the systematic Doppler phase shift of the synchronizing signal in the propagation channel is the main obstacle to differential phase synchronization. Depending on the efficiency of the Doppler phase shift compensation, the optimum frequency separation of the synchronizing tones ranges from 10 to 1500 MHz with the correspondent synchronization precision achieved from 0.25 to 2.65 ns at the observation time of up to 100 s. It is shown that the effective compensation for the Doppler shift requires periodic channel estimation for at least every 10 ms. For most prac-tical applications, however, adjusting the slave clock every 5 s using two coherent synchronizing sine tones separated by 400–500 MHz results in a satisfactory quality of synchronization.
差分相位法优化无人机时钟周期同步
本文研究了由一个主控单元集中控制的无人机同步空中无线传感器网络的设计问题。在至少100秒的时间间隔内,航空网络内所有单元必须保证10-ns的同步精度。为了实现这一目标,主单元周期性地产生两个不同频率的相干正弦音同步信号,帮助从无人机调整它们的时钟。高稳定性的烤箱控制晶体石英振荡器(OCXO)被用作无人机的机载时钟。该研究旨在评估相干同步音调的最佳频率分离,该分离提供了测量数据的最佳抗噪性,并具有可靠的载波相位模糊度分辨率。为了抑制可能出现的随机时钟偏移,采用与主机参考时标相关联的差分相位测量对从机进行周期性同步的计算机模拟来解决该问题。仿真结果表明,除无人机自身定位误差外,同步信号在传播信道中的系统多普勒相移是差分相位同步的主要障碍。根据多普勒相移补偿的效率,同步音调的最佳频率分离范围为10 ~ 1500 MHz,相应的同步精度为0.25 ~ 2.65 ns,观测时间长达100 s。结果表明,对多普勒频移的有效补偿需要至少每10毫秒进行一次周期性信道估计。然而,对于大多数实际应用,每5秒调整一次从时钟,使用间隔400-500 MHz的两个相干同步正弦波,可以获得令人满意的同步质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信