An assessment of the impact of oceanic initial conditions on the interaction of upper ocean with the tropical cyclones in the Arabian Sea

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tanuja Nigam, K. Prakash, V. Pant
{"title":"An assessment of the impact of oceanic initial conditions on the interaction of upper ocean with the tropical cyclones in the Arabian Sea","authors":"Tanuja Nigam, K. Prakash, V. Pant","doi":"10.1080/1755876X.2019.1658567","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Regional Ocean Modelling System (ROMS) is utilised to estimate the cyclone-induced mixing and cooling associated with two tropical cyclones, namely Phet and Nilofar over the Arabian Sea (AS). Numerical experiments were carried out with realistic and idealistic oceanic conditions to assess the impact of oceanic initial condition and stratification on the interaction of upper ocean with the tropical cyclones in the AS. The model simulated profiles of temperature and baroclinic kinetic energy are analysed to examine the post-cyclonic cooling and vertical distribution of inertial kinetic energy which interacts with the upper-ocean stratification. Following the cyclone-induced upwelling, the inertial mixing acts to deepen the mixed layer depth (MLD) up to 50 and 100 m from its initial values of 15 and 22 m for the Phet and Nilofar, respectively. The analysis suggests that the combined effect of higher maximum sustained winds and slower translational speed of Nilofar cyclone leads to the excessive cooling (by 1.5°C) of the sea surface as compared to Phet. A decrement in the magnitude of cooling is observed when oceanic initial stratification was altered. The available baroclinic velocity shear at different depths found to modulate the magnitude of upper-ocean cooling in different model experiments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2019.1658567","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT The Regional Ocean Modelling System (ROMS) is utilised to estimate the cyclone-induced mixing and cooling associated with two tropical cyclones, namely Phet and Nilofar over the Arabian Sea (AS). Numerical experiments were carried out with realistic and idealistic oceanic conditions to assess the impact of oceanic initial condition and stratification on the interaction of upper ocean with the tropical cyclones in the AS. The model simulated profiles of temperature and baroclinic kinetic energy are analysed to examine the post-cyclonic cooling and vertical distribution of inertial kinetic energy which interacts with the upper-ocean stratification. Following the cyclone-induced upwelling, the inertial mixing acts to deepen the mixed layer depth (MLD) up to 50 and 100 m from its initial values of 15 and 22 m for the Phet and Nilofar, respectively. The analysis suggests that the combined effect of higher maximum sustained winds and slower translational speed of Nilofar cyclone leads to the excessive cooling (by 1.5°C) of the sea surface as compared to Phet. A decrement in the magnitude of cooling is observed when oceanic initial stratification was altered. The available baroclinic velocity shear at different depths found to modulate the magnitude of upper-ocean cooling in different model experiments.
海洋初始条件对阿拉伯海上层海洋与热带气旋相互作用影响的评估
利用区域海洋模拟系统(ROMS)对阿拉伯海(AS)上的两个热带气旋Phet和Nilofar相关的气旋诱导混合和冷却进行了估计。在实际和理想海洋条件下进行了数值试验,以评估海洋初始条件和分层对上层海洋与热带气旋相互作用的影响。分析了模式模拟的温度和斜压动能剖面,探讨了气旋后的冷却和与上层海洋分层相互作用的惯性动能垂直分布。在气旋引起的上升流之后,惯性混合作用使Phet和Nilofar的混合层深度(MLD)分别从初始值15和22 m增加到50和100 m。分析表明,与Phet相比,Nilofar气旋较高的最大持续风和较慢的平移速度的综合作用导致海面过度冷却(1.5°C)。当海洋初始分层发生改变时,可观察到降温幅度的减小。在不同的模式实验中发现,不同深度的可用斜压速度切变可以调节上层海洋冷却的幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信