Mixed boundary value problems for non-divergence type elliptic equations in unbounded domains

Asymptot. Anal. Pub Date : 2018-01-02 DOI:10.3233/ASY-181469
Dat Cao, Akif I. Ibraguimov, A. Nazarov
{"title":"Mixed boundary value problems for non-divergence type elliptic equations in unbounded domains","authors":"Dat Cao, Akif I. Ibraguimov, A. Nazarov","doi":"10.3233/ASY-181469","DOIUrl":null,"url":null,"abstract":"We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\\'en-Lindel\\\"of type principle on growth/decay of a solution at infinity depending on both the structure of the Neumann portion of the boundary and the \"thickness\" of its Dirichlet portion. The result is formulated in terms of so-called $s$-capacity of the Dirichlet portion of the boundary, while the Neumann boundary should satisfy certain \"admissibility\" condition in the sequence of layers converging to infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"2 1","pages":"75-90"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\'en-Lindel\"of type principle on growth/decay of a solution at infinity depending on both the structure of the Neumann portion of the boundary and the "thickness" of its Dirichlet portion. The result is formulated in terms of so-called $s$-capacity of the Dirichlet portion of the boundary, while the Neumann boundary should satisfy certain "admissibility" condition in the sequence of layers converging to infinity.
无界域上非散度型椭圆方程的混合边值问题
研究了具有无穷远可能退化的非发散椭圆型方程在无界区域上Zaremba型问题解的定性性质。主要的结果是关于解在无穷远处的生长/衰减取决于边界的诺伊曼部分的结构和它的狄利克雷部分的“厚度”的类型原理。结果是用边界的Dirichlet部分的所谓的$s$-容量来表示的,而Neumann边界在收敛到无穷远的层序列中必须满足一定的“容许性”条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信